ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.06959
  4. Cited By
On the importance of single directions for generalization

On the importance of single directions for generalization

19 March 2018
Ari S. Morcos
David Barrett
Neil C. Rabinowitz
M. Botvinick
ArXivPDFHTML

Papers citing "On the importance of single directions for generalization"

50 / 181 papers shown
Title
Natural Language Descriptions of Deep Visual Features
Natural Language Descriptions of Deep Visual Features
Evan Hernandez
Sarah Schwettmann
David Bau
Teona Bagashvili
Antonio Torralba
Jacob Andreas
MILM
206
117
0
26 Jan 2022
Disentangled Latent Transformer for Interpretable Monocular Height
  Estimation
Disentangled Latent Transformer for Interpretable Monocular Height Estimation
Zhitong Xiong Sining Chen
Sining Chen
Yilei Shi
Xiaoxiang Zhu
ViT
24
6
0
17 Jan 2022
Reflash Dropout in Image Super-Resolution
Reflash Dropout in Image Super-Resolution
Xiangtao Kong
Xina Liu
Jinjin Gu
Yu Qiao
Chao Dong
UQCV
29
58
0
22 Dec 2021
ReAct: Out-of-distribution Detection With Rectified Activations
ReAct: Out-of-distribution Detection With Rectified Activations
Yiyou Sun
Chuan Guo
Yixuan Li
OODD
43
457
0
24 Nov 2021
Separating Content and Style for Unsupervised Image-to-Image Translation
Separating Content and Style for Unsupervised Image-to-Image Translation
Yunfei Liu
Haofei Wang
Yang Yue
Feng Lu
27
3
0
27 Oct 2021
UniFed: A Unified Framework for Federated Learning on Non-IID Image
  Features
UniFed: A Unified Framework for Federated Learning on Non-IID Image Features
Meirui Jiang
Xiaoxiao Li
Xiaofei Zhang
Michael Kamp
Qianming Dou
FedML
OOD
34
0
0
19 Oct 2021
On the Pitfalls of Analyzing Individual Neurons in Language Models
On the Pitfalls of Analyzing Individual Neurons in Language Models
Omer Antverg
Yonatan Belinkov
MILM
30
50
0
14 Oct 2021
Quantifying Local Specialization in Deep Neural Networks
Quantifying Local Specialization in Deep Neural Networks
Shlomi Hod
Daniel Filan
Stephen Casper
Andrew Critch
Stuart J. Russell
62
10
0
13 Oct 2021
On the Noise Stability and Robustness of Adversarially Trained Networks
  on NVM Crossbars
On the Noise Stability and Robustness of Adversarially Trained Networks on NVM Crossbars
Chun Tao
Deboleena Roy
I. Chakraborty
Kaushik Roy
AAML
32
2
0
19 Sep 2021
All Bark and No Bite: Rogue Dimensions in Transformer Language Models
  Obscure Representational Quality
All Bark and No Bite: Rogue Dimensions in Transformer Language Models Obscure Representational Quality
William Timkey
Marten van Schijndel
226
111
0
09 Sep 2021
Understanding of Kernels in CNN Models by Suppressing Irrelevant Visual
  Features in Images
Understanding of Kernels in CNN Models by Suppressing Irrelevant Visual Features in Images
Jiafan Zhuang
Wanying Tao
Jianfei Xing
Wei Shi
Ruixuan Wang
Weishi Zheng
FAtt
45
3
0
25 Aug 2021
Towards Interpretable Deep Networks for Monocular Depth Estimation
Towards Interpretable Deep Networks for Monocular Depth Estimation
Zunzhi You
Yi-Hsuan Tsai
W. Chiu
Guanbin Li
FAtt
40
17
0
11 Aug 2021
Where do Models go Wrong? Parameter-Space Saliency Maps for
  Explainability
Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability
Roman Levin
Manli Shu
Eitan Borgnia
Furong Huang
Micah Goldblum
Tom Goldstein
FAtt
AAML
28
10
0
03 Aug 2021
Distribution of Classification Margins: Are All Data Equal?
Distribution of Classification Margins: Are All Data Equal?
Andrzej Banburski
Fernanda De La Torre
Nishka Pant
Ishana Shastri
T. Poggio
33
4
0
21 Jul 2021
Handcrafted Backdoors in Deep Neural Networks
Handcrafted Backdoors in Deep Neural Networks
Sanghyun Hong
Nicholas Carlini
Alexey Kurakin
19
71
0
08 Jun 2021
Fidelity Estimation Improves Noisy-Image Classification With Pretrained
  Networks
Fidelity Estimation Improves Noisy-Image Classification With Pretrained Networks
Xiaoyu Lin
Deblina Bhattacharjee
Majed El Helou
Sabine Süsstrunk
15
6
0
01 Jun 2021
XOmiVAE: an interpretable deep learning model for cancer classification
  using high-dimensional omics data
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
Eloise Withnell
Xiaoyu Zhang
Kai Sun
Yike Guo
12
64
0
26 May 2021
Probabilistic Selective Encryption of Convolutional Neural Networks for
  Hierarchical Services
Probabilistic Selective Encryption of Convolutional Neural Networks for Hierarchical Services
Jinyu Tian
Jiantao Zhou
Jia Duan
AAML
16
9
0
26 May 2021
AFINet: Attentive Feature Integration Networks for Image Classification
AFINet: Attentive Feature Integration Networks for Image Classification
Xinglin Pan
Jing Xu
Yu Pan
Liangjiang Wen
Wenxiang Lin
Kun Bai
Zenglin Xu
46
10
0
10 May 2021
Inspect, Understand, Overcome: A Survey of Practical Methods for AI
  Safety
Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety
Sebastian Houben
Stephanie Abrecht
Maram Akila
Andreas Bär
Felix Brockherde
...
Serin Varghese
Michael Weber
Sebastian J. Wirkert
Tim Wirtz
Matthias Woehrle
AAML
13
58
0
29 Apr 2021
Estimating the Generalization in Deep Neural Networks via Sparsity
Estimating the Generalization in Deep Neural Networks via Sparsity
Yang Zhao
Hao Zhang
48
2
0
02 Apr 2021
Neural Response Interpretation through the Lens of Critical Pathways
Neural Response Interpretation through the Lens of Critical Pathways
Ashkan Khakzar
Soroosh Baselizadeh
Saurabh Khanduja
Christian Rupprecht
Seong Tae Kim
Nassir Navab
29
32
0
31 Mar 2021
Quantitative Performance Assessment of CNN Units via Topological Entropy
  Calculation
Quantitative Performance Assessment of CNN Units via Topological Entropy Calculation
Yang Zhao
Hao Zhang
24
7
0
17 Mar 2021
Intraclass clustering: an implicit learning ability that regularizes
  DNNs
Intraclass clustering: an implicit learning ability that regularizes DNNs
Simon Carbonnelle
Christophe De Vleeschouwer
60
8
0
11 Mar 2021
Robustness to Pruning Predicts Generalization in Deep Neural Networks
Robustness to Pruning Predicts Generalization in Deep Neural Networks
Lorenz Kuhn
Clare Lyle
Aidan Gomez
Jonas Rothfuss
Y. Gal
43
14
0
10 Mar 2021
FedBN: Federated Learning on Non-IID Features via Local Batch
  Normalization
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
790
0
15 Feb 2021
Network Pruning using Adaptive Exemplar Filters
Network Pruning using Adaptive Exemplar Filters
Mingbao Lin
Rongrong Ji
Shaojie Li
Yan Wang
Yongjian Wu
Feiyue Huang
QiXiang Ye
VLM
19
53
0
20 Jan 2021
Global Context Networks
Global Context Networks
Yue Cao
Jiarui Xu
Stephen Lin
Fangyun Wei
Han Hu
ISeg
36
96
0
24 Dec 2020
Why Unsupervised Deep Networks Generalize
Why Unsupervised Deep Networks Generalize
Anita de Mello Koch
E. Koch
R. Koch
OOD
16
8
0
07 Dec 2020
Representation Based Complexity Measures for Predicting Generalization
  in Deep Learning
Representation Based Complexity Measures for Predicting Generalization in Deep Learning
Parth Natekar
Manik Sharma
6
36
0
04 Dec 2020
Learning Class Unique Features in Fine-Grained Visual Classification
Learning Class Unique Features in Fine-Grained Visual Classification
Runkai Zheng
Zhijia Yu
Yinqi Zhang
C. Ding
Hei Victor Cheng
Li Liu
16
0
0
22 Nov 2020
Role Taxonomy of Units in Deep Neural Networks
Role Taxonomy of Units in Deep Neural Networks
Yang Zhao
Hao Zhang
Xiuyuan Hu
13
1
0
02 Nov 2020
Exemplary Natural Images Explain CNN Activations Better than
  State-of-the-Art Feature Visualization
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
47
7
0
23 Oct 2020
Towards falsifiable interpretability research
Towards falsifiable interpretability research
Matthew L. Leavitt
Ari S. Morcos
AAML
AI4CE
21
67
0
22 Oct 2020
Linking average- and worst-case perturbation robustness via class
  selectivity and dimensionality
Linking average- and worst-case perturbation robustness via class selectivity and dimensionality
Matthew L. Leavitt
Ari S. Morcos
AAML
19
2
0
14 Oct 2020
Learning Optimal Representations with the Decodable Information
  Bottleneck
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
26
43
0
27 Sep 2020
Implicit Gradient Regularization
Implicit Gradient Regularization
David Barrett
Benoit Dherin
22
147
0
23 Sep 2020
Contextual Semantic Interpretability
Contextual Semantic Interpretability
Diego Marcos
Ruth C. Fong
Sylvain Lobry
Rémi Flamary
Nicolas Courty
D. Tuia
SSL
20
27
0
18 Sep 2020
Understanding the Role of Individual Units in a Deep Neural Network
Understanding the Role of Individual Units in a Deep Neural Network
David Bau
Jun-Yan Zhu
Hendrik Strobelt
Àgata Lapedriza
Bolei Zhou
Antonio Torralba
GAN
14
436
0
10 Sep 2020
Bluff: Interactively Deciphering Adversarial Attacks on Deep Neural
  Networks
Bluff: Interactively Deciphering Adversarial Attacks on Deep Neural Networks
Nilaksh Das
Haekyu Park
Zijie J. Wang
Fred Hohman
Robert Firstman
Emily Rogers
Duen Horng Chau
AAML
28
26
0
05 Sep 2020
Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
  Action Recognition
Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision Action Recognition
Yang Liu
Keze Wang
Guanbin Li
Liang Lin
29
87
0
01 Sep 2020
Self-supervised learning through the eyes of a child
Self-supervised learning through the eyes of a child
A. Orhan
Vaibhav Gupta
Brenden M. Lake
SSL
27
100
0
31 Jul 2020
When and how CNNs generalize to out-of-distribution category-viewpoint
  combinations
When and how CNNs generalize to out-of-distribution category-viewpoint combinations
Spandan Madan
Timothy M. Henry
Jamell Dozier
Helen Ho
Nishchal Bhandari
Tomotake Sasaki
F. Durand
Hanspeter Pfister
Xavier Boix
OOD
41
24
0
15 Jul 2020
On the relationship between class selectivity, dimensionality, and
  robustness
On the relationship between class selectivity, dimensionality, and robustness
Matthew L. Leavitt
Ari S. Morcos
16
6
0
08 Jul 2020
Are there any óbject detectors' in the hidden layers of CNNs trained to
  identify objects or scenes?
Are there any óbject detectors' in the hidden layers of CNNs trained to identify objects or scenes?
E. Gale
Nicholas Martin
R. Blything
Anh Nguyen
J. Bowers
13
14
0
02 Jul 2020
Video Representation Learning with Visual Tempo Consistency
Video Representation Learning with Visual Tempo Consistency
Ceyuan Yang
Yinghao Xu
Bo Dai
Bolei Zhou
13
89
0
28 Jun 2020
Towards Understanding Hierarchical Learning: Benefits of Neural
  Representations
Towards Understanding Hierarchical Learning: Benefits of Neural Representations
Minshuo Chen
Yu Bai
J. Lee
T. Zhao
Huan Wang
Caiming Xiong
R. Socher
SSL
20
48
0
24 Jun 2020
New Interpretations of Normalization Methods in Deep Learning
New Interpretations of Normalization Methods in Deep Learning
Jiacheng Sun
Xiangyong Cao
Hanwen Liang
Weiran Huang
Zewei Chen
Zhenguo Li
21
35
0
16 Jun 2020
MMA Regularization: Decorrelating Weights of Neural Networks by
  Maximizing the Minimal Angles
MMA Regularization: Decorrelating Weights of Neural Networks by Maximizing the Minimal Angles
Zhennan Wang
Canqun Xiang
Wenbin Zou
Chen Xu
12
19
0
06 Jun 2020
Geometric algorithms for predicting resilience and recovering damage in
  neural networks
Geometric algorithms for predicting resilience and recovering damage in neural networks
G. Raghavan
Jiayi Li
Matt Thomson
AAML
14
0
0
23 May 2020
Previous
1234
Next