ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.06783
21
17

Low Rank Matrix Approximation for Geometry Filtering

19 March 2018
Xuequan Lu
S. Schaefer
Jun Luo
Lizhuang Ma
Ying He
    3DPC
ArXivPDFHTML
Abstract

We propose a robust normal estimation method for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local feature descriptor for each point and find similar, non-local neighbors that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furthermore, we provide a new filtering method for point cloud data to smooth the position data to fit the estimated normals. We show applications of our method to point cloud filtering, point set upsampling, surface reconstruction, mesh denoising, and geometric texture removal. Our experiments show that our method outperforms current methods in both visual quality and accuracy.

View on arXiv
Comments on this paper