ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.04572
  4. Cited By
COPA: Constrained PARAFAC2 for Sparse & Large Datasets

COPA: Constrained PARAFAC2 for Sparse & Large Datasets

12 March 2018
Ardavan Afshar
Ioakeim Perros
Evangelos E. Papalexakis
Elizabeth Searles
Joyce C. Ho
Jimeng Sun
ArXivPDFHTML

Papers citing "COPA: Constrained PARAFAC2 for Sparse & Large Datasets"

5 / 5 papers shown
Title
D-Tracker: Modeling Interest Diffusion in Social Activity Tensor Data Streams
D-Tracker: Modeling Interest Diffusion in Social Activity Tensor Data Streams
Shingo Higashiguchi
Yasuko Matsubara
Koki Kawabata
Taichi Murayama
Yasushi Sakurai
AI4TS
56
0
0
01 May 2025
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application
  to Phenotyping
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping
Ioakeim Perros
Evangelos E. Papalexakis
H. Park
R. Vuduc
Xiaowei Yan
C. Defilippi
Walter F. Stewart
Jimeng Sun
17
599
0
14 Mar 2018
Federated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational Phenotyping
Yejin Kim
Jimeng Sun
Hwanjo Yu
Xiaoqian Jiang
FedML
28
114
0
11 Apr 2017
SPARTan: Scalable PARAFAC2 for Large & Sparse Data
SPARTan: Scalable PARAFAC2 for Large & Sparse Data
Ioakeim Perros
Evangelos E. Papalexakis
Fei Wang
R. Vuduc
Elizabeth Searles
Michael Thompson
Jimeng Sun
19
72
0
13 Mar 2017
A Flexible and Efficient Algorithmic Framework for Constrained Matrix
  and Tensor Factorization
A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization
Kejun Huang
N. Sidiropoulos
A. Liavas
33
171
0
13 Jun 2015
1