Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.04173
Cited By
Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables
12 March 2018
Bojan Kolosnjaji
Ambra Demontis
Battista Biggio
Davide Maiorca
Giorgio Giacinto
Claudia Eckert
Fabio Roli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables"
31 / 31 papers shown
Title
Updating Windows Malware Detectors: Balancing Robustness and Regression against Adversarial EXEmples
M. Kozák
Luca Demetrio
Dmitrijs Trizna
Fabio Roli
AAML
36
0
0
04 May 2024
Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative Analysis
Mst. Shapna Akter
Hossain Shahriar
Iysa Iqbal
M. Hossain
M. A. Karim
Victor A. Clincy
R. Voicu
AAML
20
8
0
31 May 2023
Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity
Khatoon Mohammed
AAML
20
10
0
24 Feb 2023
PAD: Towards Principled Adversarial Malware Detection Against Evasion Attacks
Deqiang Li
Shicheng Cui
Yun Li
Jia Xu
Fu Xiao
Shouhuai Xu
AAML
54
18
0
22 Feb 2023
Backdoor Learning for NLP: Recent Advances, Challenges, and Future Research Directions
Marwan Omar
SILM
AAML
33
20
0
14 Feb 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
32
15
0
31 Jan 2023
Analysis of Label-Flip Poisoning Attack on Machine Learning Based Malware Detector
Kshitiz Aryal
Maanak Gupta
Mahmoud Abdelsalam
AAML
20
18
0
03 Jan 2023
Efficient Malware Analysis Using Metric Embeddings
Ethan M. Rudd
David B. Krisiloff
Scott E. Coull
Daniel Olszewski
Edward Raff
James Holt
AAML
25
6
0
05 Dec 2022
Adversarial Robustness for Tabular Data through Cost and Utility Awareness
Klim Kireev
B. Kulynych
Carmela Troncoso
AAML
26
16
0
27 Aug 2022
Adversarial Attacks against Windows PE Malware Detection: A Survey of the State-of-the-Art
Xiang Ling
Lingfei Wu
Jiangyu Zhang
Zhenqing Qu
Wei Deng
...
Chunming Wu
S. Ji
Tianyue Luo
Jingzheng Wu
Yanjun Wu
AAML
34
73
0
23 Dec 2021
Single-Shot Black-Box Adversarial Attacks Against Malware Detectors: A Causal Language Model Approach
Junjie Hu
Mohammadreza Ebrahimi
Hsinchun Chen
AAML
18
11
0
03 Dec 2021
A Comparison of State-of-the-Art Techniques for Generating Adversarial Malware Binaries
P. Dasgupta
Zachary Osman
AAML
30
2
0
22 Nov 2021
EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box Android Malware Detection
Hamid Bostani
Veelasha Moonsamy
AAML
38
51
0
07 Oct 2021
Adversarial Transfer Attacks With Unknown Data and Class Overlap
Luke E. Richards
A. Nguyen
Ryan Capps
Steven D. Forsythe
Cynthia Matuszek
Edward Raff
AAML
38
7
0
23 Sep 2021
ML-based IoT Malware Detection Under Adversarial Settings: A Systematic Evaluation
Ahmed A. Abusnaina
Afsah Anwar
Sultan Alshamrani
Abdulrahman Alabduljabbar
Rhongho Jang
Daehun Nyang
David A. Mohaisen
AAML
22
1
0
30 Aug 2021
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
Luca Demetrio
Battista Biggio
AAML
37
11
0
26 Apr 2021
A survey on practical adversarial examples for malware classifiers
Daniel Park
B. Yener
AAML
36
14
0
06 Nov 2020
Being Single Has Benefits. Instance Poisoning to Deceive Malware Classifiers
T. Shapira
David Berend
Ishai Rosenberg
Yang Liu
A. Shabtai
Yuval Elovici
AAML
21
4
0
30 Oct 2020
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection
Luca Demetrio
Scott E. Coull
Battista Biggio
Giovanni Lagorio
A. Armando
Fabio Roli
AAML
30
59
0
17 Aug 2020
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
Edward Raff
Charles K. Nicholas
AAML
27
54
0
15 Jun 2020
Functionality-preserving Black-box Optimization of Adversarial Windows Malware
Luca Demetrio
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
23
136
0
30 Mar 2020
Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers
Giorgio Severi
J. Meyer
Scott E. Coull
Alina Oprea
AAML
SILM
23
18
0
02 Mar 2020
MDEA: Malware Detection with Evolutionary Adversarial Learning
Xiruo Wang
Risto Miikkulainen
AAML
19
15
0
09 Feb 2020
WAF-A-MoLE: Evading Web Application Firewalls through Adversarial Machine Learning
Luca Demetrio
Andrea Valenza
Gabriele Costa
Giovanni Lagorio
AAML
13
27
0
07 Jan 2020
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
31
66
0
19 Dec 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
26
68
0
06 Nov 2019
COPYCAT: Practical Adversarial Attacks on Visualization-Based Malware Detection
Aminollah Khormali
Ahmed A. Abusnaina
Songqing Chen
Daehun Nyang
Aziz Mohaisen
AAML
28
28
0
20 Sep 2019
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries
Luca Demetrio
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
21
129
0
11 Jan 2019
Evading classifiers in discrete domains with provable optimality guarantees
B. Kulynych
Jamie Hayes
N. Samarin
Carmela Troncoso
AAML
15
19
0
25 Oct 2018
Exploring Adversarial Examples in Malware Detection
Octavian Suciu
Scott E. Coull
Jeffrey Johns
AAML
23
188
0
18 Oct 2018
Non-Negative Networks Against Adversarial Attacks
William Fleshman
Edward Raff
Jared Sylvester
Steven Forsyth
Mark McLean
AAML
27
41
0
15 Jun 2018
1