Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.03242
Cited By
Probably Approximately Metric-Fair Learning
8 March 2018
G. Rothblum
G. Yona
FaML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Probably Approximately Metric-Fair Learning"
17 / 17 papers shown
Title
Surfacing Biases in Large Language Models using Contrastive Input Decoding
G. Yona
Or Honovich
Itay Laish
Roee Aharoni
27
11
0
12 May 2023
Identifying, measuring, and mitigating individual unfairness for supervised learning models and application to credit risk models
Rasoul Shahsavarifar
Jithu Chandran
M. Inchiosa
A. Deshpande
Mario Schlener
V. Gossain
Yara Elias
Vinaya Murali
FaML
16
0
0
11 Nov 2022
Omnipredictors for Constrained Optimization
Lunjia Hu
Inbal Livni-Navon
Omer Reingold
Chutong Yang
28
14
0
15 Sep 2022
Towards a Responsible AI Development Lifecycle: Lessons From Information Security
Erick Galinkin
SILM
21
6
0
06 Mar 2022
SLIDE: a surrogate fairness constraint to ensure fairness consistency
Kunwoong Kim
Ilsang Ohn
Sara Kim
Yongdai Kim
35
4
0
07 Feb 2022
Learning fair representation with a parametric integral probability metric
Dongha Kim
Kunwoong Kim
Insung Kong
Ilsang Ohn
Yongdai Kim
FaML
25
16
0
07 Feb 2022
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
43
16
0
20 Sep 2021
Fairkit, Fairkit, on the Wall, Who's the Fairest of Them All? Supporting Data Scientists in Training Fair Models
Brittany Johnson
Jesse Bartola
Rico Angell
Katherine Keith
Sam Witty
S. Giguere
Yuriy Brun
FaML
33
18
0
17 Dec 2020
Aligning AI With Shared Human Values
Dan Hendrycks
Collin Burns
Steven Basart
Andrew Critch
Jingkai Li
D. Song
Jacob Steinhardt
63
522
0
05 Aug 2020
Two Simple Ways to Learn Individual Fairness Metrics from Data
Debarghya Mukherjee
Mikhail Yurochkin
Moulinath Banerjee
Yuekai Sun
FaML
26
96
0
19 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
Abstracting Fairness: Oracles, Metrics, and Interpretability
Cynthia Dwork
Christina Ilvento
G. Rothblum
Pragya Sur
FaML
25
5
0
04 Apr 2020
Metric Learning for Individual Fairness
Christina Ilvento
FaML
19
96
0
01 Jun 2019
Average Individual Fairness: Algorithms, Generalization and Experiments
Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
FaML
FedML
19
84
0
25 May 2019
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Michael P. Kim
Amirata Ghorbani
James Zou
MLAU
25
336
0
31 May 2018
Online Learning with an Unknown Fairness Metric
Stephen Gillen
Christopher Jung
Michael Kearns
Aaron Roth
FaML
37
143
0
20 Feb 2018
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1