ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.02855
  4. Cited By
Satisficing in Time-Sensitive Bandit Learning

Satisficing in Time-Sensitive Bandit Learning

7 March 2018
Daniel Russo
Benjamin Van Roy
ArXivPDFHTML

Papers citing "Satisficing in Time-Sensitive Bandit Learning"

16 / 16 papers shown
Title
On Bits and Bandits: Quantifying the Regret-Information Trade-off
On Bits and Bandits: Quantifying the Regret-Information Trade-off
Itai Shufaro
Nadav Merlis
Nir Weinberger
Shie Mannor
101
0
0
26 May 2024
Information-Theoretic Confidence Bounds for Reinforcement Learning
Information-Theoretic Confidence Bounds for Reinforcement Learning
Xiuyuan Lu
Benjamin Van Roy
25
60
0
21 Nov 2019
An Information-Theoretic Approach to Minimax Regret in Partial
  Monitoring
An Information-Theoretic Approach to Minimax Regret in Partial Monitoring
Tor Lattimore
Csaba Szepesvári
23
70
0
01 Feb 2019
Information Directed Sampling for Stochastic Bandits with Graph Feedback
Information Directed Sampling for Stochastic Bandits with Graph Feedback
Fang Liu
Swapna Buccapatnam
Ness B. Shroff
35
41
0
08 Nov 2017
Thompson Sampling For Stochastic Bandits with Graph Feedback
Thompson Sampling For Stochastic Bandits with Graph Feedback
Aristide C. Y. Tossou
Christos Dimitrakakis
Devdatt Dubhashi
28
28
0
16 Jan 2017
Multi-scale exploration of convex functions and bandit convex
  optimization
Multi-scale exploration of convex functions and bandit convex optimization
Sébastien Bubeck
Ronen Eldan
35
73
0
23 Jul 2015
On the Complexity of Best Arm Identification in Multi-Armed Bandit
  Models
On the Complexity of Best Arm Identification in Multi-Armed Bandit Models
E. Kaufmann
Olivier Cappé
Aurélien Garivier
110
1,021
0
16 Jul 2014
Learning to Optimize via Information-Directed Sampling
Learning to Optimize via Information-Directed Sampling
Daniel Russo
Benjamin Van Roy
104
280
0
21 Mar 2014
An Information-Theoretic Analysis of Thompson Sampling
An Information-Theoretic Analysis of Thompson Sampling
Daniel Russo
Benjamin Van Roy
93
423
0
21 Mar 2014
Learning to Optimize Via Posterior Sampling
Learning to Optimize Via Posterior Sampling
Daniel Russo
Benjamin Van Roy
137
699
0
11 Jan 2013
Linear Bandits in High Dimension and Recommendation Systems
Linear Bandits in High Dimension and Recommendation Systems
Y. Deshpande
Andrea Montanari
OffRL
54
71
0
08 Jan 2013
Kullback-Leibler upper confidence bounds for optimal sequential
  allocation
Kullback-Leibler upper confidence bounds for optimal sequential allocation
Olivier Cappé
Aurélien Garivier
Odalric-Ambrym Maillard
Rémi Munos
Gilles Stoltz
86
394
0
03 Oct 2012
Further Optimal Regret Bounds for Thompson Sampling
Further Optimal Regret Bounds for Thompson Sampling
Shipra Agrawal
Navin Goyal
92
443
0
15 Sep 2012
X-Armed Bandits
X-Armed Bandits
Sébastien Bubeck
Rémi Munos
Gilles Stoltz
Csaba Szepesvari
123
383
0
25 Jan 2010
Linearly Parameterized Bandits
Linearly Parameterized Bandits
Paat Rusmevichientong
J. Tsitsiklis
206
558
0
18 Dec 2008
Multi-Armed Bandits in Metric Spaces
Multi-Armed Bandits in Metric Spaces
Robert D. Kleinberg
Aleksandrs Slivkins
E. Upfal
212
468
0
29 Sep 2008
1