ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.01118
  4. Cited By
Some Considerations on Learning to Explore via Meta-Reinforcement
  Learning
v1v2 (latest)

Some Considerations on Learning to Explore via Meta-Reinforcement Learning

3 March 2018
Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
    LRM
ArXiv (abs)PDFHTML

Papers citing "Some Considerations on Learning to Explore via Meta-Reinforcement Learning"

22 / 22 papers shown
Title
Meta-Reinforcement Learning Robust to Distributional Shift via Model
  Identification and Experience Relabeling
Meta-Reinforcement Learning Robust to Distributional Shift via Model Identification and Experience Relabeling
Russell Mendonca
Xinyang Geng
Chelsea Finn
Sergey Levine
OODOffRL
81
40
0
12 Jun 2020
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search
Jonas Rothfuss
Dennis Lee
I. Clavera
Tamim Asfour
Pieter Abbeel
65
210
0
16 Oct 2018
Transfer Learning for Estimating Causal Effects using Neural Networks
Transfer Learning for Estimating Causal Effects using Neural Networks
Sören R. Künzel
Bradly C. Stadie
N. Vemuri
V. Ramakrishnan
Jasjeet Sekhon
Pieter Abbeel
CML
49
32
0
23 Aug 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
499
19,065
0
20 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,909
0
09 Mar 2017
Count-Based Exploration with Neural Density Models
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
84
623
0
03 Mar 2017
FeUdal Networks for Hierarchical Reinforcement Learning
FeUdal Networks for Hierarchical Reinforcement Learning
A. Vezhnevets
Simon Osindero
Tom Schaul
N. Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
FedML
84
905
0
03 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
97
980
0
17 Nov 2016
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
91
773
0
15 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
96
1,019
0
09 Nov 2016
The Option-Critic Architecture
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
64
1,087
0
16 Sep 2016
Progressive Neural Networks
Progressive Neural Networks
Andrei A. Rusu
Neil C. Rabinowitz
Guillaume Desjardins
Hubert Soyer
J. Kirkpatrick
Koray Kavukcuoglu
Razvan Pascanu
R. Hadsell
CLLAI4CE
77
2,452
0
15 Jun 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
174
1,478
0
06 Jun 2016
A Deep Hierarchical Approach to Lifelong Learning in Minecraft
A Deep Hierarchical Approach to Lifelong Learning in Minecraft
Chen Tessler
Shahar Givony
Tom Zahavy
D. Mankowitz
Shie Mannor
CLL
129
381
0
25 Apr 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
121
1,309
0
15 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
199
8,859
0
04 Feb 2016
On Learning to Think: Algorithmic Information Theory for Novel
  Combinations of Reinforcement Learning Controllers and Recurrent Neural World
  Models
On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models
Jürgen Schmidhuber
64
104
0
30 Nov 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
320
13,248
0
09 Sep 2015
Incentivizing Exploration In Reinforcement Learning With Deep Predictive
  Models
Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models
Bradly C. Stadie
Sergey Levine
Pieter Abbeel
92
505
0
03 Jul 2015
Gradient Estimation Using Stochastic Computation Graphs
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
136
393
0
17 Jun 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,776
0
19 Feb 2015
Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic
  Environments
Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments
Yi Sun
Faustino J. Gomez
Jürgen Schmidhuber
111
163
0
29 Mar 2011
1