Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.00606
Cited By
v1
v2
v3
v4 (latest)
On Oracle-Efficient PAC RL with Rich Observations
1 March 2018
Christoph Dann
Nan Jiang
A. Krishnamurthy
Alekh Agarwal
John Langford
Robert Schapire
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On Oracle-Efficient PAC RL with Rich Observations"
31 / 81 papers shown
Title
Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning
Hiroki Furuta
T. Matsushima
Tadashi Kozuno
Y. Matsuo
Sergey Levine
Ofir Nachum
S. Gu
OffRL
58
14
0
23 Mar 2021
Provably Efficient Cooperative Multi-Agent Reinforcement Learning with Function Approximation
Abhimanyu Dubey
Alex Pentland
78
26
0
08 Mar 2021
Model-free Representation Learning and Exploration in Low-rank MDPs
Aditya Modi
Jinglin Chen
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
OffRL
174
81
0
14 Feb 2021
RL for Latent MDPs: Regret Guarantees and a Lower Bound
Jeongyeol Kwon
Yonathan Efroni
Constantine Caramanis
Shie Mannor
86
80
0
09 Feb 2021
Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve Optimism, Embrace Virtual Curvature
Kefan Dong
Jiaqi Yang
Tengyu Ma
97
33
0
08 Feb 2021
On Query-efficient Planning in MDPs under Linear Realizability of the Optimal State-value Function
Gellert Weisz
Philip Amortila
Barnabás Janzer
Yasin Abbasi-Yadkori
Nan Jiang
Csaba Szepesvári
OffRL
73
20
0
03 Feb 2021
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms
Chi Jin
Qinghua Liu
Sobhan Miryoosefi
OffRL
144
220
0
01 Feb 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
116
41
0
29 Jan 2021
A Provably Efficient Algorithm for Linear Markov Decision Process with Low Switching Cost
Minbo Gao
Tianle Xie
S. Du
Lin F. Yang
84
46
0
02 Jan 2021
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
113
209
0
15 Dec 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
99
18
0
09 Nov 2020
Instance-Dependent Complexity of Contextual Bandits and Reinforcement Learning: A Disagreement-Based Perspective
Dylan J. Foster
Alexander Rakhlin
D. Simchi-Levi
Yunzong Xu
163
78
0
07 Oct 2020
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning
Alekh Agarwal
Mikael Henaff
Sham Kakade
Wen Sun
OffRL
94
110
0
16 Jul 2020
Q
Q
Q
-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
102
62
0
16 Jun 2020
Multi-Agent Reinforcement Learning in Stochastic Networked Systems
Yiheng Lin
Guannan Qu
Longbo Huang
Adam Wierman
99
39
0
11 Jun 2020
Reinforcement Learning with Feedback Graphs
Christoph Dann
Yishay Mansour
M. Mohri
Ayush Sekhari
Karthik Sridharan
51
9
0
07 May 2020
Is Long Horizon Reinforcement Learning More Difficult Than Short Horizon Reinforcement Learning?
Ruosong Wang
S. Du
Lin F. Yang
Sham Kakade
OffRL
95
52
0
01 May 2020
Provably Efficient Exploration for Reinforcement Learning Using Unsupervised Learning
Fei Feng
Ruosong Wang
W. Yin
S. Du
Lin F. Yang
OffRL
SSL
81
7
0
15 Mar 2020
Learning Near Optimal Policies with Low Inherent Bellman Error
Andrea Zanette
A. Lazaric
Mykel Kochenderfer
Emma Brunskill
OffRL
116
222
0
29 Feb 2020
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
175
127
0
17 Feb 2020
Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning
Dipendra Kumar Misra
Mikael Henaff
A. Krishnamurthy
John Langford
95
151
0
13 Nov 2019
Frequentist Regret Bounds for Randomized Least-Squares Value Iteration
Andrea Zanette
David Brandfonbrener
Emma Brunskill
Matteo Pirotta
A. Lazaric
155
132
0
01 Nov 2019
Minimax Weight and Q-Function Learning for Off-Policy Evaluation
Masatoshi Uehara
Jiawei Huang
Nan Jiang
OffRL
190
187
0
28 Oct 2019
Sample Complexity of Reinforcement Learning using Linearly Combined Model Ensembles
Aditya Modi
Nan Jiang
Ambuj Tewari
Satinder Singh
72
133
0
23 Oct 2019
PAC Reinforcement Learning without Real-World Feedback
Yuren Zhong
A. Deshmukh
Clayton Scott
58
7
0
23 Sep 2019
n
\sqrt{n}
n
-Regret for Learning in Markov Decision Processes with Function Approximation and Low Bellman Rank
Kefan Dong
Jian-wei Peng
Yining Wang
Yuanshuo Zhou
OffRL
81
36
0
05 Sep 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
Jason D. Lee
G. Mahajan
138
321
0
01 Aug 2019
On Value Functions and the Agent-Environment Boundary
Nan Jiang
OffRL
151
21
0
30 May 2019
Information-Theoretic Considerations in Batch Reinforcement Learning
Jinglin Chen
Nan Jiang
OOD
OffRL
193
378
0
01 May 2019
Policy Certificates: Towards Accountable Reinforcement Learning
Christoph Dann
Ashutosh Adhikari
Wei Wei
Jimmy J. Lin
OffRL
170
146
0
07 Nov 2018
Dual Policy Iteration
Wen Sun
Geoffrey J. Gordon
Byron Boots
J. Andrew Bagnell
OffRL
105
57
0
28 May 2018
Previous
1
2