ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09941
  4. Cited By
Demystifying Parallel and Distributed Deep Learning: An In-Depth
  Concurrency Analysis
v1v2 (latest)

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis

26 February 2018
Tal Ben-Nun
Torsten Hoefler
    GNN
ArXiv (abs)PDFHTML

Papers citing "Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis"

4 / 154 papers shown
Title
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient
  Descent
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
216
2,274
0
28 Jun 2011
Distributed Delayed Stochastic Optimization
Distributed Delayed Stochastic Optimization
Alekh Agarwal
John C. Duchi
139
627
0
28 Apr 2011
Hybrid Deterministic-Stochastic Methods for Data Fitting
Hybrid Deterministic-Stochastic Methods for Data Fitting
M. Friedlander
Mark Schmidt
222
388
0
13 Apr 2011
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
287
685
0
07 Dec 2010
Previous
1234