ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09511
  4. Cited By
Missing Data in Sparse Transition Matrix Estimation for Sub-Gaussian
  Vector Autoregressive Processes

Missing Data in Sparse Transition Matrix Estimation for Sub-Gaussian Vector Autoregressive Processes

26 February 2018
Amin Jalali
Rebecca Willett
ArXivPDFHTML

Papers citing "Missing Data in Sparse Transition Matrix Estimation for Sub-Gaussian Vector Autoregressive Processes"

3 / 3 papers shown
Title
Minimax Estimation of Partially-Observed Vector AutoRegressions
Minimax Estimation of Partially-Observed Vector AutoRegressions
Guillaume Dalle
Yohann De Castro
14
0
0
17 Jun 2021
New Computational and Statistical Aspects of Regularized Regression with
  Application to Rare Feature Selection and Aggregation
New Computational and Statistical Aspects of Regularized Regression with Application to Rare Feature Selection and Aggregation
Amin Jalali
Adel Javanmard
Maryam Fazel
23
1
0
10 Apr 2019
Estimating Network Structure from Incomplete Event Data
Estimating Network Structure from Incomplete Event Data
Benjamin Mark
Garvesh Raskutti
Rebecca Willett
10
4
0
07 Nov 2018
1