ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08903
  4. Cited By
Product Kernel Interpolation for Scalable Gaussian Processes

Product Kernel Interpolation for Scalable Gaussian Processes

24 February 2018
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
ArXivPDFHTML

Papers citing "Product Kernel Interpolation for Scalable Gaussian Processes"

15 / 15 papers shown
Title
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDL
GP
45
1
0
28 Oct 2024
Time-Varying Transition Matrices with Multi-task Gaussian Processes
Time-Varying Transition Matrices with Multi-task Gaussian Processes
Ekin Ugurel
16
0
0
20 Jun 2023
Kernel Interpolation with Sparse Grids
Kernel Interpolation with Sparse Grids
Mohit Yadav
Daniel Sheldon
Cameron Musco
23
5
0
23 May 2023
Neural Operator: Learning Maps Between Function Spaces
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
57
442
0
19 Aug 2021
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
19
18
0
08 Jul 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
28
8
0
18 Jun 2021
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
19
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
33
114
0
18 Jun 2020
The Renyi Gaussian Process: Towards Improved Generalization
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
107
3
0
15 Oct 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
24
226
0
19 Mar 2019
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
14
75
0
29 Oct 2018
OBOE: Collaborative Filtering for AutoML Model Selection
OBOE: Collaborative Filtering for AutoML Model Selection
Chengrun Yang
Yuji Akimoto
Dae Won Kim
Madeleine Udell
21
100
0
09 Aug 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
25
94
0
16 Mar 2018
A Bayesian Nonparametric Approach for Estimating Individualized
  Treatment-Response Curves
A Bayesian Nonparametric Approach for Estimating Individualized Treatment-Response Curves
Yanbo Xu
Yanxun Xu
Suchi Saria
CML
64
40
0
18 Aug 2016
1