ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08831
  4. Cited By
Convolutional Neural Networks combined with Runge-Kutta Methods

Convolutional Neural Networks combined with Runge-Kutta Methods

24 February 2018
Mai Zhu
Bo Chang
Chong Fu
    AI4CE
ArXivPDFHTML

Papers citing "Convolutional Neural Networks combined with Runge-Kutta Methods"

9 / 9 papers shown
Title
Graph Neural Ordinary Differential Equations-based method for
  Collaborative Filtering
Graph Neural Ordinary Differential Equations-based method for Collaborative Filtering
Ke Xu
Yuanjie Zhu
Weizhi Zhang
Philip S. Yu
BDL
GNN
29
4
0
21 Nov 2023
Zero Stability Well Predicts Performance of Convolutional Neural
  Networks
Zero Stability Well Predicts Performance of Convolutional Neural Networks
Liangming Chen
Long Jin
Mingsheng Shang
MLT
24
8
0
27 Jun 2022
Designing Rotationally Invariant Neural Networks from PDEs and
  Variational Methods
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
22
4
0
31 Aug 2021
LightMove: A Lightweight Next-POI Recommendation for Taxicab Rooftop
  Advertising
LightMove: A Lightweight Next-POI Recommendation for Taxicab Rooftop Advertising
Jinsung Jeon
Soyoung Kang
Minju Jo
Seunghyeon Cho
Noseong Park
Seonghoon Kim
Chiyoung Song
28
16
0
11 Aug 2021
LT-OCF: Learnable-Time ODE-based Collaborative Filtering
LT-OCF: Learnable-Time ODE-based Collaborative Filtering
Jeongwhan Choi
Jinsung Jeon
Noseong Park
32
30
0
08 Aug 2021
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression
  and Continuous Normalizing Flows
Discretize-Optimize vs. Optimize-Discretize for Time-Series Regression and Continuous Normalizing Flows
Derek Onken
Lars Ruthotto
BDL
29
51
0
27 May 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised
  Video Prediction
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
89
288
0
03 Mar 2020
A Review on Deep Learning in Medical Image Reconstruction
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
32
122
0
23 Jun 2019
Bridging the Gaps Between Residual Learning, Recurrent Neural Networks
  and Visual Cortex
Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
Q. Liao
T. Poggio
213
255
0
13 Apr 2016
1