ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08626
  4. Cited By
Empirical Risk Minimization under Fairness Constraints

Empirical Risk Minimization under Fairness Constraints

23 February 2018
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
    FaML
ArXivPDFHTML

Papers citing "Empirical Risk Minimization under Fairness Constraints"

48 / 98 papers shown
Title
Consider the Alternatives: Navigating Fairness-Accuracy Tradeoffs via
  Disqualification
Consider the Alternatives: Navigating Fairness-Accuracy Tradeoffs via Disqualification
G. Rothblum
G. Yona
FaML
33
1
0
02 Oct 2021
Fairness guarantee in multi-class classification
Fairness guarantee in multi-class classification
Christophe Denis
Romuald Elie
Mohamed Hebiri
Franccois Hu
FaML
48
48
0
28 Sep 2021
Fairness without Imputation: A Decision Tree Approach for Fair
  Prediction with Missing Values
Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
Haewon Jeong
Hao Wang
Flavio du Pin Calmon
FaML
51
33
0
21 Sep 2021
Improving Fairness for Data Valuation in Horizontal Federated Learning
Improving Fairness for Data Valuation in Horizontal Federated Learning
Zhenan Fan
Huang Fang
Zirui Zhou
Jian Pei
M. Friedlander
Changxin Liu
Yong Zhang
TDI
FedML
45
47
0
19 Sep 2021
Achieving Model Fairness in Vertical Federated Learning
Achieving Model Fairness in Vertical Federated Learning
Changxin Liu
Zhenan Fan
Zirui Zhou
Yang Shi
J. Pei
Lingyang Chu
Yong Zhang
FedML
60
12
0
17 Sep 2021
Amazon SageMaker Clarify: Machine Learning Bias Detection and
  Explainability in the Cloud
Amazon SageMaker Clarify: Machine Learning Bias Detection and Explainability in the Cloud
Michaela Hardt
Xiaoguang Chen
Xiaoyi Cheng
Michele Donini
J. Gelman
...
Muhammad Bilal Zafar
Sanjiv Ranjan Das
Kevin Haas
Tyler Hill
K. Kenthapadi
ELM
FaML
36
42
0
07 Sep 2021
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Seonguk Seo
Joon-Young Lee
Bohyung Han
FaML
76
48
0
06 Aug 2021
Constrained Classification and Policy Learning
Constrained Classification and Policy Learning
T. Kitagawa
Shosei Sakaguchi
A. Tetenov
OffRL
37
12
0
24 Jun 2021
Multi-objective Asynchronous Successive Halving
Multi-objective Asynchronous Successive Halving
Robin Schmucker
Michele Donini
Muhammad Bilal Zafar
David Salinas
Cédric Archambeau
32
24
0
23 Jun 2021
An Online Riemannian PCA for Stochastic Canonical Correlation Analysis
An Online Riemannian PCA for Stochastic Canonical Correlation Analysis
Zihang Meng
Rudrasis Chakraborty
Vikas Singh
9
9
0
08 Jun 2021
Label-Imbalanced and Group-Sensitive Classification under
  Overparameterization
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
36
94
0
02 Mar 2021
Learning Invariant Representations using Inverse Contrastive Loss
Learning Invariant Representations using Inverse Contrastive Loss
A. K. Akash
Vishnu Suresh Lokhande
Sathya Ravi
Vikas Singh
SSL
21
8
0
16 Feb 2021
Technical Challenges for Training Fair Neural Networks
Technical Challenges for Training Fair Neural Networks
Valeriia Cherepanova
V. Nanda
Micah Goldblum
John P. Dickerson
Tom Goldstein
FaML
25
22
0
12 Feb 2021
Fairness through Social Welfare Optimization
Fairness through Social Welfare Optimization
V. Chen
J. N. Hooker
24
1
0
30 Jan 2021
Characterizing Fairness Over the Set of Good Models Under Selective
  Labels
Characterizing Fairness Over the Set of Good Models Under Selective Labels
Amanda Coston
Ashesh Rambachan
Alexandra Chouldechova
FaML
32
82
0
02 Jan 2021
Towards Fair Deep Anomaly Detection
Towards Fair Deep Anomaly Detection
Hongjing Zhang
Ian Davidson
FaML
55
39
0
29 Dec 2020
On the Privacy Risks of Algorithmic Fairness
On the Privacy Risks of Algorithmic Fairness
Hong Chang
Reza Shokri
FaML
38
110
0
07 Nov 2020
Coping with Label Shift via Distributionally Robust Optimisation
Coping with Label Shift via Distributionally Robust Optimisation
J.N. Zhang
A. Menon
Andreas Veit
Srinadh Bhojanapalli
Sanjiv Kumar
S. Sra
OOD
24
70
0
23 Oct 2020
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
  Discrimination
Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination
Tao Zhang
Tianqing Zhu
Jing Li
Mengde Han
Wanlei Zhou
Philip S. Yu
FaML
37
49
0
25 Sep 2020
MARS: Mixed Virtual and Real Wearable Sensors for Human Activity
  Recognition with Multi-Domain Deep Learning Model
MARS: Mixed Virtual and Real Wearable Sensors for Human Activity Recognition with Multi-Domain Deep Learning Model
Ling Pei
Songpengcheng Xia
Lei Chu
Fanyi Xiao
Qi Wu
Wenxian Yu
Zixuan Zhang
37
30
0
20 Sep 2020
A Distributionally Robust Approach to Fair Classification
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
28
61
0
18 Jul 2020
Learning Bounds for Risk-sensitive Learning
Learning Bounds for Risk-sensitive Learning
Jaeho Lee
Sejun Park
Jinwoo Shin
25
46
0
15 Jun 2020
Fairness in Forecasting and Learning Linear Dynamical Systems
Fairness in Forecasting and Learning Linear Dynamical Systems
Quan-Gen Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
37
7
0
12 Jun 2020
Fair Regression with Wasserstein Barycenters
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
32
101
0
12 Jun 2020
Probably Approximately Correct Constrained Learning
Probably Approximately Correct Constrained Learning
Luiz F. O. Chamon
Alejandro Ribeiro
22
38
0
09 Jun 2020
Fair Bayesian Optimization
Fair Bayesian Optimization
Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
K. Kenthapadi
Cédric Archambeau
FaML
27
84
0
09 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
908
0
02 Mar 2020
Robust Optimization for Fairness with Noisy Protected Groups
Robust Optimization for Fairness with Noisy Protected Groups
S. Wang
Wenshuo Guo
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
Michael I. Jordan
NoLa
27
118
0
21 Feb 2020
Fair Data Adaptation with Quantile Preservation
Fair Data Adaptation with Quantile Preservation
Drago Plečko
N. Meinshausen
14
30
0
15 Nov 2019
Efficient Fair Principal Component Analysis
Efficient Fair Principal Component Analysis
Mohammad Mahdi Kamani
Farzin Haddadpour
R. Forsati
M. Mahdavi
13
36
0
12 Nov 2019
Fairness Violations and Mitigation under Covariate Shift
Fairness Violations and Mitigation under Covariate Shift
Harvineet Singh
Rina Singh
Vishwali Mhasawade
R. Chunara
OOD
27
15
0
02 Nov 2019
Wasserstein Fair Classification
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
33
173
0
28 Jul 2019
Rényi Fair Inference
Rényi Fair Inference
Sina Baharlouei
Maher Nouiehed
Ahmad Beirami
Meisam Razaviyayn
FaML
24
66
0
28 Jun 2019
Learning Fair Representations for Kernel Models
Learning Fair Representations for Kernel Models
Zilong Tan
Samuel Yeom
Matt Fredrikson
Ameet Talwalkar
FaML
35
25
0
27 Jun 2019
Learning Fair and Transferable Representations
Learning Fair and Transferable Representations
L. Oneto
Michele Donini
Andreas Maurer
Massimiliano Pontil
FaML
37
19
0
25 Jun 2019
Variational Fair Clustering
Variational Fair Clustering
Imtiaz Masud Ziko
Eric Granger
Jing Yuan
Ismail Ben Ayed
30
13
0
19 Jun 2019
Pairwise Fairness for Ranking and Regression
Pairwise Fairness for Ranking and Regression
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
S. Wang
33
112
0
12 Jun 2019
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary
  Classification
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
24
85
0
12 Jun 2019
Testing DNN Image Classifiers for Confusion & Bias Errors
Testing DNN Image Classifiers for Confusion & Bias Errors
Yuchi Tian
Ziyuan Zhong
Vicente Ordonez
Gail E. Kaiser
Baishakhi Ray
24
52
0
20 May 2019
Fair Classification and Social Welfare
Fair Classification and Social Welfare
Lily Hu
Yiling Chen
FaML
26
88
0
01 May 2019
Fairness risk measures
Fairness risk measures
Robert C. Williamson
A. Menon
FaML
33
135
0
24 Jan 2019
Fair k-Center Clustering for Data Summarization
Fair k-Center Clustering for Data Summarization
Matthäus Kleindessner
Pranjal Awasthi
Jamie Morgenstern
42
162
0
24 Jan 2019
Identifying and Correcting Label Bias in Machine Learning
Identifying and Correcting Label Bias in Machine Learning
Heinrich Jiang
Ofir Nachum
FaML
16
281
0
15 Jan 2019
Eliminating Latent Discrimination: Train Then Mask
Eliminating Latent Discrimination: Train Then Mask
Soheil Ghili
Ehsan Kazemi
Amin Karbasi
FaML
27
9
0
12 Nov 2018
A General Framework for Fair Regression
A General Framework for Fair Regression
Jack K. Fitzsimons
AbdulRahman Al Ali
Michael A. Osborne
Stephen J. Roberts
FaML
27
37
0
10 Oct 2018
A statistical framework for fair predictive algorithms
A statistical framework for fair predictive algorithms
K. Lum
J. Johndrow
FaML
179
105
0
25 Oct 2016
Previous
12