Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08232
Cited By
v1
v2
v3 (latest)
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
22 February 2018
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
Basel Alomair
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks"
41 / 441 papers shown
Title
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
390
378
0
24 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
284
1,811
0
18 Mar 2020
Cryptanalytic Extraction of Neural Network Models
Nicholas Carlini
Matthew Jagielski
Ilya Mironov
FedML
MLAU
MIACV
AAML
164
137
0
10 Mar 2020
Towards Probabilistic Verification of Machine Unlearning
David M. Sommer
Liwei Song
Sameer Wagh
Prateek Mittal
AAML
123
74
0
09 Mar 2020
Federating Recommendations Using Differentially Private Prototypes
Mónica Ribero
Jette Henderson
Sinead Williamson
H. Vikalo
FedML
62
39
0
01 Mar 2020
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping
Sanghyun Hong
Varun Chandrasekaran
Yigitcan Kaya
Tudor Dumitras
Nicolas Papernot
AAML
88
137
0
26 Feb 2020
Approximate Data Deletion from Machine Learning Models
Zachary Izzo
Mary Anne Smart
Kamalika Chaudhuri
James Zou
MU
104
266
0
24 Feb 2020
Differentially Private Set Union
Sivakanth Gopi
P. Gulhane
Janardhan Kulkarni
J. Shen
Milad Shokouhi
Sergey Yekhanin
FedML
42
32
0
22 Feb 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
181
134
0
07 Feb 2020
CryptoSPN: Privacy-preserving Sum-Product Network Inference
Amos Treiber
Alejandro Molina
Christian Weinert
T. Schneider
Kristian Kersting
63
10
0
03 Feb 2020
Model Extraction Attacks against Recurrent Neural Networks
Tatsuya Takemura
Naoto Yanai
T. Fujiwara
MLAU
MIACV
AAML
76
15
0
01 Feb 2020
Analyzing Information Leakage of Updates to Natural Language Models
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
Victor Rühle
Andrew Paverd
O. Ohrimenko
Boris Köpf
Marc Brockschmidt
ELM
MIACV
FedML
PILM
KELM
86
127
0
17 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
298
6,343
0
10 Dec 2019
Machine Unlearning
Lucas Bourtoule
Varun Chandrasekaran
Christopher A. Choquette-Choo
Hengrui Jia
Adelin Travers
Baiwu Zhang
David Lie
Nicolas Papernot
MU
200
890
0
09 Dec 2019
Security of Deep Learning Methodologies: Challenges and Opportunities
Shahbaz Rezaei
Xin Liu
AAML
68
4
0
08 Dec 2019
Differentially Private Synthetic Mixed-Type Data Generation For Unsupervised Learning
U. Tantipongpipat
Chris Waites
Digvijay Boob
Amaresh Ankit Siva
Rachel Cummings
SyDa
97
31
0
06 Dec 2019
PAC learning with stable and private predictions
Y. Dagan
Vitaly Feldman
67
13
0
24 Nov 2019
Robust Anomaly Detection and Backdoor Attack Detection Via Differential Privacy
Min Du
R. Jia
Basel Alomair
AAML
80
177
0
16 Nov 2019
Revocable Federated Learning: A Benchmark of Federated Forest
Yang Liu
Zhuo Ma
Ximeng Liu
Zhuzhu Wang
Siqi Ma
Ken Ren
FedML
MU
73
11
0
08 Nov 2019
Enhancing the Privacy of Federated Learning with Sketching
Zaoxing Liu
Tian Li
Virginia Smith
Vyas Sekar
FedML
67
22
0
05 Nov 2019
Privacy Enhanced Multimodal Neural Representations for Emotion Recognition
Mimansa Jaiswal
E. Provost
111
76
0
29 Oct 2019
Thieves on Sesame Street! Model Extraction of BERT-based APIs
Kalpesh Krishna
Gaurav Singh Tomar
Ankur P. Parikh
Nicolas Papernot
Mohit Iyyer
MIACV
MLAU
156
201
0
27 Oct 2019
Weighted Distributed Differential Privacy ERM: Convex and Non-convex
Yilin Kang
Yong Liu
Weiping Wang
70
10
0
23 Oct 2019
Actor Critic with Differentially Private Critic
Jonathan Lebensold
William L. Hamilton
Borja Balle
Doina Precup
OffRL
45
9
0
14 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
200
1,017
0
04 Oct 2019
Alleviating Privacy Attacks via Causal Learning
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
98
32
0
27 Sep 2019
Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML
Ashvin Agrawal
Rony Chatterjee
Carlo Curino
Avrilia Floratou
Neha Godwal
...
Karla Saur
Rathijit Sen
Markus Weimer
Travis Wright
Yiwen Zhu
135
40
0
30 Aug 2019
White-box vs Black-box: Bayes Optimal Strategies for Membership Inference
Alexandre Sablayrolles
Matthijs Douze
Yann Ollivier
Cordelia Schmid
Hervé Jégou
MIACV
91
369
0
29 Aug 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
173
4,581
0
21 Aug 2019
Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges
Solmaz Niknam
Harpreet S. Dhillon
J. H. Reed
90
613
0
30 Jul 2019
Membership Privacy for Machine Learning Models Through Knowledge Transfer
Virat Shejwalkar
Amir Houmansadr
88
10
0
15 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
200
504
0
12 Jun 2019
How You Act Tells a Lot: Privacy-Leakage Attack on Deep Reinforcement Learning
Xinlei Pan
Weiyao Wang
Xiaoshuai Zhang
Yue Liu
Jinfeng Yi
Basel Alomair
MIACV
151
26
0
24 Apr 2019
Federated Learning Of Out-Of-Vocabulary Words
Mingqing Chen
Rajiv Mathews
Tom Y. Ouyang
F. Beaufays
FedML
92
165
0
26 Mar 2019
Déjà Vu: an empirical evaluation of the memorization properties of ConvNets
Alexandre Sablayrolles
Matthijs Douze
Cordelia Schmid
Hervé Jégou
49
18
0
17 Sep 2018
Machine Learning with Membership Privacy using Adversarial Regularization
Milad Nasr
Reza Shokri
Amir Houmansadr
FedML
MIACV
78
477
0
16 Jul 2018
Model Reconstruction from Model Explanations
S. Milli
Ludwig Schmidt
Anca Dragan
Moritz Hardt
FAtt
66
179
0
13 Jul 2018
An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors
Joshua Allen
Bolin Ding
Janardhan Kulkarni
Harsha Nori
O. Ohrimenko
Sergey Yekhanin
SyDa
FedML
131
32
0
02 Jul 2018
How To Backdoor Federated Learning
Eugene Bagdasaryan
Andreas Veit
Yiqing Hua
D. Estrin
Vitaly Shmatikov
SILM
FedML
156
1,943
0
02 Jul 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
187
1,488
0
10 May 2018
Adversarial Training Versus Weight Decay
A. Galloway
T. Tanay
Graham W. Taylor
AAML
70
23
0
10 Apr 2018
Previous
1
2
3
4
5
6
7
8
9