Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.07814
Cited By
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
21 February 2018
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
MLT
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Explain: An Information-Theoretic Perspective on Model Interpretation"
50 / 302 papers shown
Title
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
144
665
0
28 Dec 2020
Get It Scored Using AutoSAS -- An Automated System for Scoring Short Answers
Yaman Kumar Singla
Swati Aggarwal
Debanjan Mahata
R. Shah
Ponnurangam Kumaraguru
Roger Zimmermann
26
56
0
21 Dec 2020
Learning from the Best: Rationalizing Prediction by Adversarial Information Calibration
Lei Sha
Oana-Maria Camburu
Thomas Lukasiewicz
133
35
0
16 Dec 2020
E2E-FS: An End-to-End Feature Selection Method for Neural Networks
Brais Cancela
V. Bolón-Canedo
Amparo Alonso-Betanzos
18
9
0
14 Dec 2020
Synthetic Data: Opening the data floodgates to enable faster, more directed development of machine learning methods
James Jordon
A. Wilson
M. Schaar
AI4CE
87
16
0
08 Dec 2020
Challenging common interpretability assumptions in feature attribution explanations
Jonathan Dinu
Jeffrey P. Bigham
J. Z. K. Unaffiliated
16
14
0
04 Dec 2020
Explainable Multivariate Time Series Classification: A Deep Neural Network Which Learns To Attend To Important Variables As Well As Informative Time Intervals
Tsung-Yu Hsieh
Suhang Wang
Yiwei Sun
Vasant Honavar
BDL
AI4TS
FAtt
18
9
0
23 Nov 2020
Interpretable Visual Reasoning via Induced Symbolic Space
Zhonghao Wang
Kai Wang
Mo Yu
Jinjun Xiong
Wen-mei W. Hwu
M. Hasegawa-Johnson
Humphrey Shi
LRM
OCL
16
19
0
23 Nov 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
48
243
0
21 Nov 2020
Data Representing Ground-Truth Explanations to Evaluate XAI Methods
S. Amiri
Rosina O. Weber
Prateek Goel
Owen Brooks
Archer Gandley
Brian Kitchell
Aaron Zehm
XAI
43
8
0
18 Nov 2020
Learning outside the Black-Box: The pursuit of interpretable models
Jonathan Crabbé
Yao Zhang
W. Zame
M. Schaar
6
24
0
17 Nov 2020
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
53
542
0
09 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
33
33
0
06 Nov 2020
MAIRE -- A Model-Agnostic Interpretable Rule Extraction Procedure for Explaining Classifiers
Rajat Sharma
N. Reddy
V. Kamakshi
N. C. Krishnan
Shweta Jain
FAtt
27
7
0
03 Nov 2020
Bayesian Importance of Features (BIF)
Kamil Adamczewski
Frederik Harder
Mijung Park
FAtt
15
2
0
26 Oct 2020
A Framework to Learn with Interpretation
Jayneel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
AI4CE
FAtt
25
30
0
19 Oct 2020
Human-interpretable model explainability on high-dimensional data
Damien de Mijolla
Christopher Frye
M. Kunesch
J. Mansir
Ilya Feige
FAtt
25
8
0
14 Oct 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Xiuming Zhang
Dacheng Tao
Xinchao Wang
FAtt
38
17
0
14 Oct 2020
Explain2Attack: Text Adversarial Attacks via Cross-Domain Interpretability
M. Hossam
Trung Le
He Zhao
Dinh Q. Phung
SILM
AAML
13
6
0
14 Oct 2020
Learning to Attack with Fewer Pixels: A Probabilistic Post-hoc Framework for Refining Arbitrary Dense Adversarial Attacks
He Zhao
Thanh-Tuan Nguyen
Trung Le
Paul Montague
O. Vel
Tamas Abraham
Dinh Q. Phung
AAML
24
2
0
13 Oct 2020
Explaining Deep Neural Networks
Oana-Maria Camburu
XAI
FAtt
33
26
0
04 Oct 2020
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAML
VLM
15
63
0
01 Oct 2020
Information-Theoretic Visual Explanation for Black-Box Classifiers
Jihun Yi
Eunji Kim
Siwon Kim
Sungroh Yoon
FAtt
25
6
0
23 Sep 2020
The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal Sufficient Subsets
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
23
23
0
23 Sep 2020
Explainable Empirical Risk Minimization
Linli Zhang
Georgios Karakasidis
Arina Odnoblyudova
Leyla Dogruel
Alex Jung
27
5
0
03 Sep 2020
ALEX: Active Learning based Enhancement of a Model's Explainability
Ishani Mondal
Debasis Ganguly
9
2
0
02 Sep 2020
MED-TEX: Transferring and Explaining Knowledge with Less Data from Pretrained Medical Imaging Models
Thanh Nguyen-Duc
He Zhao
Jianfei Cai
Dinh Q. Phung
VLM
MedIm
33
4
0
06 Aug 2020
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
34
65
0
04 Aug 2020
A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution
A. Khademi
Vasant Honavar
CML
20
9
0
01 Aug 2020
Gaussian Process Regression with Local Explanation
Yuya Yoshikawa
Tomoharu Iwata
FAtt
13
18
0
03 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
19
18
0
29 Jun 2020
Set Based Stochastic Subsampling
Bruno Andreis
Seanie Lee
A. Nguyen
Juho Lee
Eunho Yang
Sung Ju Hwang
BDL
14
0
0
25 Jun 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
How does this interaction affect me? Interpretable attribution for feature interactions
Michael Tsang
Sirisha Rambhatla
Yan Liu
FAtt
22
85
0
19 Jun 2020
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
38
85
0
15 Jun 2020
Explaining Predictions by Approximating the Local Decision Boundary
G. Vlassopoulos
T. Erven
Henry Brighton
Vlado Menkovski
FAtt
25
8
0
14 Jun 2020
DNF-Net: A Neural Architecture for Tabular Data
A. Abutbul
G. Elidan
L. Katzir
Ran El-Yaniv
LMTD
AI4CE
24
29
0
11 Jun 2020
Why Attentions May Not Be Interpretable?
Bing Bai
Jian Liang
Guanhua Zhang
Hao Li
Kun Bai
Fei Wang
FAtt
25
56
0
10 Jun 2020
Neural Methods for Point-wise Dependency Estimation
Yao-Hung Hubert Tsai
Han Zhao
M. Yamada
Louis-Philippe Morency
Ruslan Salakhutdinov
33
31
0
09 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei Wang
AAML
54
18
0
09 Jun 2020
Aligning Faithful Interpretations with their Social Attribution
Alon Jacovi
Yoav Goldberg
23
105
0
01 Jun 2020
Rationalizing Text Matching: Learning Sparse Alignments via Optimal Transport
Kyle Swanson
L. Yu
Tao Lei
OT
29
37
0
27 May 2020
NILE : Natural Language Inference with Faithful Natural Language Explanations
Sawan Kumar
Partha P. Talukdar
XAI
LRM
19
160
0
25 May 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
33
219
0
01 May 2020
How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking
Nicola De Cao
M. Schlichtkrull
Wilker Aziz
Ivan Titov
25
90
0
30 Apr 2020
Multimodal Routing: Improving Local and Global Interpretability of Multimodal Language Analysis
Yao-Hung Hubert Tsai
Martin Q. Ma
Muqiao Yang
Ruslan Salakhutdinov
Louis-Philippe Morency
12
4
0
29 Apr 2020
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
202
201
0
22 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
Neural Generators of Sparse Local Linear Models for Achieving both Accuracy and Interpretability
Yuya Yoshikawa
Tomoharu Iwata
16
7
0
13 Mar 2020
Explaining Knowledge Distillation by Quantifying the Knowledge
Xu Cheng
Zhefan Rao
Yilan Chen
Quanshi Zhang
18
119
0
07 Mar 2020
Previous
1
2
3
4
5
6
7
Next