Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.07810
Cited By
Manipulating and Measuring Model Interpretability
21 February 2018
Forough Poursabzi-Sangdeh
D. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna M. Wallach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Manipulating and Measuring Model Interpretability"
14 / 114 papers shown
Title
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
59
93
0
05 Mar 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
33
197
0
03 Feb 2020
Proxy Tasks and Subjective Measures Can Be Misleading in Evaluating Explainable AI Systems
Zana Buçinca
Phoebe Lin
Krzysztof Z. Gajos
Elena L. Glassman
ELM
22
280
0
22 Jan 2020
"Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans
Vivian Lai
Han Liu
Chenhao Tan
35
139
0
14 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
702
0
08 Jan 2020
Effect of Confidence and Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making
Yunfeng Zhang
Q. V. Liao
Rachel K. E. Bellamy
28
662
0
07 Jan 2020
Measurement and Fairness
Abigail Z. Jacobs
Hanna M. Wallach
14
381
0
11 Dec 2019
Towards Quantification of Explainability in Explainable Artificial Intelligence Methods
Sheikh Rabiul Islam
W. Eberle
S. Ghafoor
XAI
22
42
0
22 Nov 2019
A Human-Grounded Evaluation of SHAP for Alert Processing
Hilde J. P. Weerts
Werner van Ipenburg
Mykola Pechenizkiy
FAtt
11
70
0
07 Jul 2019
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
54
37
0
29 May 2019
Learning Representations by Humans, for Humans
Sophie Hilgard
Nir Rosenfeld
M. Banaji
Jack Cao
David C. Parkes
OCL
HAI
AI4CE
34
29
0
29 May 2019
From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles into Practices
Jessica Morley
Luciano Floridi
Libby Kinsey
Anat Elhalal
16
56
0
15 May 2019
"Why did you do that?": Explaining black box models with Inductive Synthesis
Görkem Paçaci
David Johnson
S. McKeever
A. Hamfelt
25
6
0
17 Apr 2019
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
Previous
1
2
3