Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.07295
Cited By
Attack Strength vs. Detectability Dilemma in Adversarial Machine Learning
20 February 2018
Christopher Frederickson
Michael Moore
Glenn Dawson
R. Polikar
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attack Strength vs. Detectability Dilemma in Adversarial Machine Learning"
8 / 8 papers shown
Title
Timber! Poisoning Decision Trees
Stefano Calzavara
Lorenzo Cazzaro
Massimo Vettori
AAML
30
0
0
01 Oct 2024
PACOL: Poisoning Attacks Against Continual Learners
Huayu Li
G. Ditzler
AAML
25
2
0
18 Nov 2023
Avoid Adversarial Adaption in Federated Learning by Multi-Metric Investigations
T. Krauß
Alexandra Dmitrienko
AAML
27
4
0
06 Jun 2023
On the Robustness of Random Forest Against Untargeted Data Poisoning: An Ensemble-Based Approach
M. Anisetti
C. Ardagna
Alessandro Balestrucci
Nicola Bena
Ernesto Damiani
C. Yeun
AAML
OOD
32
10
0
28 Sep 2022
The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers?
Antonio Emanuele Cinà
Sebastiano Vascon
Ambra Demontis
Battista Biggio
Fabio Roli
Marcello Pelillo
AAML
32
9
0
23 Mar 2021
A Game-Theoretic Approach to Adversarial Linear Support Vector Classification
Farhad Farokhi
AAML
27
3
0
24 Jun 2019
Stronger Data Poisoning Attacks Break Data Sanitization Defenses
Pang Wei Koh
Jacob Steinhardt
Percy Liang
6
240
0
02 Nov 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
1