Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.06806
Cited By
Divide, Denoise, and Defend against Adversarial Attacks
19 February 2018
Seyed-Mohsen Moosavi-Dezfooli
A. Shrivastava
Oncel Tuzel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Divide, Denoise, and Defend against Adversarial Attacks"
8 / 8 papers shown
Title
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
Rene Vidal
26
8
0
28 Sep 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
42
1
0
29 Jun 2023
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
31
5
0
28 Dec 2021
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
156
0
08 Sep 2020
Class-Aware Domain Adaptation for Improving Adversarial Robustness
Xianxu Hou
Jingxin Liu
Bolei Xu
Xiaolong Wang
Bozhi Liu
Guoping Qiu
OOD
AAML
43
8
0
10 May 2020
A unified view on differential privacy and robustness to adversarial examples
Rafael Pinot
Florian Yger
Cédric Gouy-Pailler
Jamal Atif
AAML
21
17
0
19 Jun 2019
Structured Adversarial Attack: Towards General Implementation and Better Interpretability
Kaidi Xu
Sijia Liu
Pu Zhao
Pin-Yu Chen
Huan Zhang
Quanfu Fan
Deniz Erdogmus
Yanzhi Wang
X. Lin
AAML
18
160
0
05 Aug 2018
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,552
0
25 Jan 2016
1