ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06604
  4. Cited By
Learning High-level Representations from Demonstrations
v1v2v3 (latest)

Learning High-level Representations from Demonstrations

19 February 2018
Garrett Andersen
Peter Vrancx
Haitham Bou-Ammar
ArXiv (abs)PDFHTML

Papers citing "Learning High-level Representations from Demonstrations"

7 / 7 papers shown
Title
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
529
19,237
0
20 Jul 2017
Exploration--Exploitation in MDPs with Options
Exploration--Exploitation in MDPs with Options
Ronan Fruit
A. Lazaric
43
41
0
25 Mar 2017
FeUdal Networks for Hierarchical Reinforcement Learning
FeUdal Networks for Hierarchical Reinforcement Learning
A. Vezhnevets
Simon Osindero
Tom Schaul
N. Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
FedML
96
907
0
03 Mar 2017
Modular Multitask Reinforcement Learning with Policy Sketches
Modular Multitask Reinforcement Learning with Policy Sketches
Jacob Andreas
Dan Klein
Sergey Levine
OffRL
158
463
0
06 Nov 2016
The Option-Critic Architecture
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
64
1,088
0
16 Sep 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
84
1,695
0
22 Apr 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
71
1,137
0
20 Apr 2016
1