Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.06509
Cited By
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
19 February 2018
Sanjeev Arora
Nadav Cohen
Elad Hazan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization"
50 / 119 papers shown
Title
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization
Aviral Kumar
Rishabh Agarwal
Tengyu Ma
Aaron Courville
George Tucker
Sergey Levine
OffRL
31
65
0
09 Dec 2021
Pixelated Butterfly: Simple and Efficient Sparse training for Neural Network Models
Tri Dao
Beidi Chen
Kaizhao Liang
Jiaming Yang
Zhao Song
Atri Rudra
Christopher Ré
33
75
0
30 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
26
75
0
29 Oct 2021
Path Regularization: A Convexity and Sparsity Inducing Regularization for Parallel ReLU Networks
Tolga Ergen
Mert Pilanci
32
16
0
18 Oct 2021
S-Cyc: A Learning Rate Schedule for Iterative Pruning of ReLU-based Networks
Shiyu Liu
Chong Min John Tan
Mehul Motani
CLL
29
4
0
17 Oct 2021
Global Optimality Beyond Two Layers: Training Deep ReLU Networks via Convex Programs
Tolga Ergen
Mert Pilanci
OffRL
MLT
32
33
0
11 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
35
7
0
11 Oct 2021
Towards Demystifying Representation Learning with Non-contrastive Self-supervision
Xiang Wang
Xinlei Chen
S. Du
Yuandong Tian
SSL
21
26
0
11 Oct 2021
Multi-Head ReLU Implicit Neural Representation Networks
Arya Aftab
Alireza Morsali
42
11
0
07 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
46
46
0
07 Oct 2021
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
TrAISformer -- A Transformer Network with Sparse Augmented Data Representation and Cross Entropy Loss for AIS-based Vessel Trajectory Prediction
Duong Nguyen
Ronan Fablet
21
24
0
08 Sep 2021
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
36
5
0
06 Aug 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
34
17
0
04 Jul 2021
A Mechanism for Producing Aligned Latent Spaces with Autoencoders
Saachi Jain
Adityanarayanan Radhakrishnan
Caroline Uhler
24
9
0
29 Jun 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Layer Folding: Neural Network Depth Reduction using Activation Linearization
Amir Ben Dror
Niv Zehngut
Avraham Raviv
E. Artyomov
Ran Vitek
R. Jevnisek
29
20
0
17 Jun 2021
Compacter: Efficient Low-Rank Hypercomplex Adapter Layers
Rabeeh Karimi Mahabadi
James Henderson
Sebastian Ruder
MoE
67
468
0
08 Jun 2021
Initialization and Regularization of Factorized Neural Layers
M. Khodak
Neil A. Tenenholtz
Lester W. Mackey
Nicolò Fusi
65
56
0
03 May 2021
PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols
Aaron Courville
Yanpeng Zhao
Kewei Tu
23
22
0
28 Apr 2021
Understanding self-supervised Learning Dynamics without Contrastive Pairs
Yuandong Tian
Xinlei Chen
Surya Ganguli
SSL
138
281
0
12 Feb 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
39
3
0
12 Jan 2021
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
35
50
0
16 Dec 2020
Neural collapse with unconstrained features
D. Mixon
Hans Parshall
Jianzong Pi
28
114
0
23 Nov 2020
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
21
60
0
12 Nov 2020
Modular Primitives for High-Performance Differentiable Rendering
S. Laine
Janne Hellsten
Tero Karras
Yeongho Seol
J. Lehtinen
Timo Aila
6
436
0
06 Nov 2020
Deep matrix factorizations
Pierre De Handschutter
Nicolas Gillis
Xavier Siebert
BDL
28
40
0
01 Oct 2020
It's Hard for Neural Networks To Learn the Game of Life
Jacob Mitchell Springer
Garrett Kenyon
21
21
0
03 Sep 2020
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Dmitry Lepikhin
HyoukJoong Lee
Yuanzhong Xu
Dehao Chen
Orhan Firat
Yanping Huang
M. Krikun
Noam M. Shazeer
Z. Chen
MoE
43
1,108
0
30 Jun 2020
Recurrent Quantum Neural Networks
Johannes Bausch
21
151
0
25 Jun 2020
Auxiliary Learning by Implicit Differentiation
Aviv Navon
Idan Achituve
Haggai Maron
Gal Chechik
Ethan Fetaya
28
59
0
22 Jun 2020
DO-Conv: Depthwise Over-parameterized Convolutional Layer
Jinming Cao
Yangyan Li
Mingchao Sun
Ying-Cong Chen
Dani Lischinski
Daniel Cohen-Or
Baoquan Chen
Changhe Tu
OOD
33
166
0
22 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
28
3
0
19 Jun 2020
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
21
33
0
16 Jun 2020
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
19
2,843
0
09 Jun 2020
Gradient Monitored Reinforcement Learning
Mohammed Sharafath Abdul Hameed
Gavneet Singh Chadha
Andreas Schwung
S. Ding
33
10
0
25 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
The Landscape of Matrix Factorization Revisited
Hossein Valavi
Sulin Liu
Peter J. Ramadge
17
5
0
27 Feb 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
42
54
0
25 Feb 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
35
19
0
31 Dec 2019
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
Kaipeng Zhang
Zhuoran Yang
Tamer Basar
58
1,181
0
24 Nov 2019
Neural Similarity Learning
Weiyang Liu
Zhen Liu
James M. Rehg
Le Song
27
29
0
28 Oct 2019
Overparameterized Neural Networks Implement Associative Memory
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
BDL
35
71
0
26 Sep 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
42
51
0
24 Jul 2019
Associated Learning: Decomposing End-to-end Backpropagation based on Auto-encoders and Target Propagation
Yu-Wei Kao
Hung-Hsuan Chen
BDL
17
5
0
13 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
38
491
0
31 May 2019
On the Expressive Power of Deep Polynomial Neural Networks
Joe Kileel
Matthew Trager
Joan Bruna
24
82
0
29 May 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
24
18
0
07 Apr 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
47
351
0
27 Mar 2019
Previous
1
2
3
Next