ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06467
  4. Cited By
Memorize or generalize? Searching for a compositional RNN in a haystack

Memorize or generalize? Searching for a compositional RNN in a haystack

18 February 2018
Adam Liska
Germán Kruszewski
Marco Baroni
ArXivPDFHTML

Papers citing "Memorize or generalize? Searching for a compositional RNN in a haystack"

24 / 24 papers shown
Title
MLissard: Multilingual Long and Simple Sequential Reasoning Benchmarks
MLissard: Multilingual Long and Simple Sequential Reasoning Benchmarks
M. Bueno
R. Lotufo
Rodrigo Nogueira
LRM
31
0
0
08 Oct 2024
Compositional learning of functions in humans and machines
Compositional learning of functions in humans and machines
Yanli Zhou
Brenden M. Lake
Adina Williams
CoGe
43
1
0
18 Mar 2024
Compositional Capabilities of Autoregressive Transformers: A Study on
  Synthetic, Interpretable Tasks
Compositional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks
Rahul Ramesh
Ekdeep Singh Lubana
Mikail Khona
Robert P. Dick
Hidenori Tanaka
CoGe
39
7
0
21 Nov 2023
Self-Organising Neural Discrete Representation Learning à la Kohonen
Self-Organising Neural Discrete Representation Learning à la Kohonen
Kazuki Irie
Róbert Csordás
Jürgen Schmidhuber
SSL
32
1
0
15 Feb 2023
A Short Survey of Systematic Generalization
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
43
1
0
22 Nov 2022
CTL++: Evaluating Generalization on Never-Seen Compositional Patterns of
  Known Functions, and Compatibility of Neural Representations
CTL++: Evaluating Generalization on Never-Seen Compositional Patterns of Known Functions, and Compatibility of Neural Representations
Róbert Csordás
Kazuki Irie
Jürgen Schmidhuber
NAI
19
11
0
12 Oct 2022
State-of-the-art generalisation research in NLP: A taxonomy and review
State-of-the-art generalisation research in NLP: A taxonomy and review
Dieuwke Hupkes
Mario Giulianelli
Verna Dankers
Mikel Artetxe
Yanai Elazar
...
Leila Khalatbari
Maria Ryskina
Rita Frieske
Ryan Cotterell
Zhijing Jin
129
95
0
06 Oct 2022
Does Entity Abstraction Help Generative Transformers Reason?
Does Entity Abstraction Help Generative Transformers Reason?
Nicolas Angelard-Gontier
Siva Reddy
C. Pal
34
5
0
05 Jan 2022
How Do Neural Sequence Models Generalize? Local and Global Context Cues
  for Out-of-Distribution Prediction
How Do Neural Sequence Models Generalize? Local and Global Context Cues for Out-of-Distribution Prediction
Anthony Bau
Jacob Andreas
25
3
0
04 Nov 2021
Compositional Attention: Disentangling Search and Retrieval
Compositional Attention: Disentangling Search and Retrieval
Sarthak Mittal
Sharath Chandra Raparthy
Irina Rish
Yoshua Bengio
Guillaume Lajoie
22
20
0
18 Oct 2021
The Neural Data Router: Adaptive Control Flow in Transformers Improves
  Systematic Generalization
The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization
Róbert Csordás
Kazuki Irie
Jürgen Schmidhuber
AI4CE
33
54
0
14 Oct 2021
Inducing Transformer's Compositional Generalization Ability via
  Auxiliary Sequence Prediction Tasks
Inducing Transformer's Compositional Generalization Ability via Auxiliary Sequence Prediction Tasks
Yichen Jiang
Joey Tianyi Zhou
100
25
0
30 Sep 2021
The Devil is in the Detail: Simple Tricks Improve Systematic
  Generalization of Transformers
The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers
Róbert Csordás
Kazuki Irie
Jürgen Schmidhuber
ViT
30
129
0
26 Aug 2021
Making Transformers Solve Compositional Tasks
Making Transformers Solve Compositional Tasks
Santiago Ontañón
Joshua Ainslie
Vaclav Cvicek
Zachary Kenneth Fisher
44
70
0
09 Aug 2021
Pointer Value Retrieval: A new benchmark for understanding the limits of
  neural network generalization
Pointer Value Retrieval: A new benchmark for understanding the limits of neural network generalization
Chiyuan Zhang
M. Raghu
Jon M. Kleinberg
Samy Bengio
OOD
32
30
0
27 Jul 2021
Improving Compositional Generalization in Classification Tasks via
  Structure Annotations
Improving Compositional Generalization in Classification Tasks via Structure Annotations
Juyong Kim
Pradeep Ravikumar
Joshua Ainslie
Santiago Ontañón
CoGe
21
18
0
19 Jun 2021
On the proper role of linguistically-oriented deep net analysis in
  linguistic theorizing
On the proper role of linguistically-oriented deep net analysis in linguistic theorizing
Marco Baroni
18
51
0
16 Jun 2021
Location Attention for Extrapolation to Longer Sequences
Location Attention for Extrapolation to Longer Sequences
Yann Dubois
Gautier Dagan
Dieuwke Hupkes
Elia Bruni
23
40
0
10 Nov 2019
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Cinjon Resnick
Abhinav Gupta
Jakob N. Foerster
Andrew M. Dai
Kyunghyun Cho
31
51
0
24 Oct 2019
On the Realization of Compositionality in Neural Networks
On the Realization of Compositionality in Neural Networks
Joris Baan
Jana Leible
Mitja Nikolaus
David Rau
Dennis Ulmer
Tim Baumgärtner
Dieuwke Hupkes
Elia Bruni
CoGe
21
16
0
04 Jun 2019
Transcoding compositionally: using attention to find more generalizable
  solutions
Transcoding compositionally: using attention to find more generalizable solutions
K. Korrel
Dieuwke Hupkes
Verna Dankers
Elia Bruni
30
31
0
04 Jun 2019
Automatically Composing Representation Transformations as a Means for
  Generalization
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas Griffiths
26
68
0
12 Jul 2018
The Fine Line between Linguistic Generalization and Failure in
  Seq2Seq-Attention Models
The Fine Line between Linguistic Generalization and Failure in Seq2Seq-Attention Models
Noah Weber
L. Shekhar
Niranjan Balasubramanian
102
30
0
03 May 2018
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
1