Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.06058
Cited By
Variance-based Gradient Compression for Efficient Distributed Deep Learning
16 February 2018
Yusuke Tsuzuku
H. Imachi
Takuya Akiba
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variance-based Gradient Compression for Efficient Distributed Deep Learning"
12 / 12 papers shown
Title
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
66
7
0
17 Sep 2024
RS-DGC: Exploring Neighborhood Statistics for Dynamic Gradient Compression on Remote Sensing Image Interpretation
Weiying Xie
Zixuan Wang
Jitao Ma
Daixun Li
Yunsong Li
40
0
0
29 Dec 2023
M22: A Communication-Efficient Algorithm for Federated Learning Inspired by Rate-Distortion
Yangyi Liu
Stefano Rini
Sadaf Salehkalaibar
Jun Chen
FedML
21
4
0
23 Jan 2023
Similarity-based Label Inference Attack against Training and Inference of Split Learning
Junlin Liu
Xinchen Lyu
Qimei Cui
Xiaofeng Tao
FedML
35
26
0
10 Mar 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning
A. Mondal
Harpreet Virk
Debayan Gupta
45
15
0
06 Feb 2022
On the Utility of Gradient Compression in Distributed Training Systems
Saurabh Agarwal
Hongyi Wang
Shivaram Venkataraman
Dimitris Papailiopoulos
41
46
0
28 Feb 2021
PSO-PS: Parameter Synchronization with Particle Swarm Optimization for Distributed Training of Deep Neural Networks
Qing Ye
Y. Han
Yanan Sun
Jiancheng Lv
28
3
0
06 Sep 2020
Federated Learning over Wireless Fading Channels
M. Amiri
Deniz Gunduz
33
508
0
23 Jul 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
43
2,163
0
21 Jun 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
24
1,337
0
07 Mar 2019
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
28
486
0
27 May 2018
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
36
212
0
22 May 2018
1