ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05908
  4. Cited By
Recognizing Cuneiform Signs Using Graph Based Methods

Recognizing Cuneiform Signs Using Graph Based Methods

16 February 2018
Nils M. Kriege
Matthias Fey
Denis Fisseler
Petra Mutzel
F. Weichert
ArXivPDFHTML

Papers citing "Recognizing Cuneiform Signs Using Graph Based Methods"

7 / 7 papers shown
Title
Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein
  Distance
Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein Distance
Junjie Yang
Matthieu Labeau
Steeven Villa
OT
26
1
0
28 Sep 2023
DeepScribe: Localization and Classification of Elamite Cuneiform Signs Via Deep Learning
DeepScribe: Localization and Classification of Elamite Cuneiform Signs Via Deep Learning
Edward C. Williams
Grace Su
Sandra R. Schloen
Miller C. Prosser
Susanne Paulus
S.Rohith Krishnan
21
3
0
02 Jun 2023
Graph Fuzzy System: Concepts, Models and Algorithms
Graph Fuzzy System: Concepts, Models and Algorithms
F. Hu
Zhaohong Deng
Zhenping Xie
K. Choi
Shitong Wang
29
1
0
30 Oct 2022
Efficient Approximation of Gromov-Wasserstein Distance Using Importance
  Sparsification
Efficient Approximation of Gromov-Wasserstein Distance Using Importance Sparsification
Mengyu Li
Jun Yu
Hongteng Xu
Cheng Meng
26
13
0
26 May 2022
Optimal Transport for structured data with application on graphs
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
25
266
0
23 May 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1