Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05664
Cited By
DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training
15 February 2018
Nathan Kallus
CML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training"
18 / 18 papers shown
Title
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
60
0
0
08 May 2025
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Lokesh Nagalapatti
Pranava Singhal
Avishek Ghosh
Sunita Sarawagi
CML
81
0
0
07 Feb 2025
Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient
Natavsa Tagasovska
Vladimir Gligorijević
Kyunghyun Cho
Andreas Loukas
DiffM
52
4
0
28 May 2024
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
71
2
0
16 Oct 2023
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
CML
41
11
0
30 Jan 2023
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Causal Inference for De-biasing Motion Estimation from Robotic Observational Data
Junhong Xu
Kai-Li Yin
Jason M. Gregory
Lantao Liu
CML
23
3
0
17 Oct 2022
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
45
32
0
30 Sep 2022
Image-based Treatment Effect Heterogeneity
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
32
20
0
13 Jun 2022
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CML
SyDa
16
11
0
18 Mar 2022
Estimating causal effects with optimization-based methods: A review and empirical comparison
Martin Cousineau
V. Verter
S. Murphy
J. Pineau
CML
24
9
0
28 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
24
29
0
02 Feb 2022
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
36
5
0
06 Aug 2021
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Abhin Shah
Karthikeyan Shanmugam
Kartik Ahuja
CML
36
12
0
22 Jun 2021
High-Dimensional Feature Selection for Sample Efficient Treatment Effect Estimation
Kristjan Greenewald
Dmitriy A. Katz-Rogozhnikov
Karthikeyan Shanmugam
CML
39
9
0
03 Nov 2020
Synthetic learner: model-free inference on treatments over time
Davide Viviano
Jelena Bradic
CML
22
19
0
02 Apr 2019
Adversarial Balancing for Causal Inference
Michal Ozery-Flato
Pierre Thodoroff
Matan Ninio
Michal Rosen-Zvi
T. El-Hay
CML
GAN
16
25
0
17 Oct 2018
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
719
0
12 May 2016
1