Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05431
Cited By
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
15 February 2018
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo"
9 / 9 papers shown
Title
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
133
3
0
28 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
Peter Whalley
Neil K. Chada
Benedict Leimkuhler
BDL
70
4
0
14 Oct 2024
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
Rong Ge
Holden Lee
Jianfeng Lu
35
22
0
08 Nov 2019
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
67
232
0
11 Jul 2016
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
68
276
0
11 May 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
105
1,817
0
01 Jul 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
82
906
0
17 Feb 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
248
1,246
0
10 Sep 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
115
1,031
0
10 Sep 2012
1