Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05074
Cited By
L4: Practical loss-based stepsize adaptation for deep learning
14 February 2018
Michal Rolínek
Georg Martius
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"L4: Practical loss-based stepsize adaptation for deep learning"
17 / 17 papers shown
Title
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
39
2
0
05 Jul 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
25
13
0
27 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
26
56
0
08 Feb 2023
QLABGrad: a Hyperparameter-Free and Convergence-Guaranteed Scheme for Deep Learning
Minghan Fu
Fang-Xiang Wu
ODL
22
6
0
01 Feb 2023
Making SGD Parameter-Free
Y. Carmon
Oliver Hinder
25
41
0
04 May 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
34
30
0
28 Oct 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
53
2
0
07 Jul 2021
How to decay your learning rate
Aitor Lewkowycz
36
24
0
23 Mar 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
41
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
30
0
0
02 Oct 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
LOSSGRAD: automatic learning rate in gradient descent
B. Wójcik
Lukasz Maziarka
Jacek Tabor
ODL
32
4
0
20 Feb 2019
Collaborative Sampling in Generative Adversarial Networks
Yuejiang Liu
Parth Kothari
Alexandre Alahi
TTA
28
16
0
02 Feb 2019
1