Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04063
Cited By
Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control
12 February 2018
Moritz August
José Miguel Hernández-Lobato
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control"
6 / 6 papers shown
Title
Monte Carlo Tree Search based Hybrid Optimization of Variational Quantum Circuits
Jiahao Yao
Haoya Li
Marin Bukov
Lin Lin
Lexing Ying
16
15
0
30 Mar 2022
Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving
Jiahao Yao
Lin Lin
Marin Bukov
BDL
AI4CE
21
61
0
07 Oct 2020
Deep Reinforcement Learning for Efficient Measurement of Quantum Devices
Vu-Linh Nguyen
S. B. Orbell
D. Lennon
H. Moon
F. Vigneau
...
D. Zumbuhl
G. Briggs
Michael A. Osborne
D. Sejdinovic
N. Ares
19
39
0
30 Sep 2020
Quantum enhancements for deep reinforcement learning in large spaces
Sofiene Jerbi
Lea M. Trenkwalder
Hendrik Poulsen Nautrup
H. Briegel
Vedran Dunjko
27
5
0
28 Oct 2019
Optimizing Quantum Error Correction Codes with Reinforcement Learning
Hendrik Poulsen Nautrup
Nicolas Delfosse
Vedran Dunjko
H. Briegel
N. Friis
16
155
0
20 Dec 2018
Learning in Quantum Control: High-Dimensional Global Optimization for Noisy Quantum Dynamics
Pantita Palittapongarnpim
P. Wittek
E. Zahedinejad
Shakib Vedaie
B. Sanders
AI4CE
51
87
0
12 Jul 2016
1