ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03875
  4. Cited By
Pseudo-Recursal: Solving the Catastrophic Forgetting Problem in Deep
  Neural Networks

Pseudo-Recursal: Solving the Catastrophic Forgetting Problem in Deep Neural Networks

12 February 2018
C. Atkinson
B. McCane
Lech Szymanski
Anthony Robins
    CLL
ArXivPDFHTML

Papers citing "Pseudo-Recursal: Solving the Catastrophic Forgetting Problem in Deep Neural Networks"

14 / 14 papers shown
Title
Brain-Inspired Continual Learning-Robust Feature Distillation and
  Re-Consolidation for Class Incremental Learning
Brain-Inspired Continual Learning-Robust Feature Distillation and Re-Consolidation for Class Incremental Learning
Hikmat Khan
N. Bouaynaya
Ghulam Rasool
CLL
43
1
0
22 Apr 2024
Infinite dSprites for Disentangled Continual Learning: Separating Memory
  Edits from Generalization
Infinite dSprites for Disentangled Continual Learning: Separating Memory Edits from Generalization
Sebastian Dziadzio
cCaugatay Yildiz
Gido M. van de Ven
Tomasz Trzciñski
Tinne Tuytelaars
Matthias Bethge
32
1
0
27 Dec 2023
SHARP: Sparsity and Hidden Activation RePlay for Neuro-Inspired
  Continual Learning
SHARP: Sparsity and Hidden Activation RePlay for Neuro-Inspired Continual Learning
Mustafa Burak Gurbuz
J. M. Moorman
Constantinos Dovrolis
CLL
34
0
0
29 May 2023
Unveiling the Tapestry: the Interplay of Generalization and Forgetting
  in Continual Learning
Unveiling the Tapestry: the Interplay of Generalization and Forgetting in Continual Learning
Zenglin Shi
Jing Jie
Ying Sun
J. Lim
Mengmi Zhang
CLL
44
1
0
21 Nov 2022
CL-CrossVQA: A Continual Learning Benchmark for Cross-Domain Visual
  Question Answering
CL-CrossVQA: A Continual Learning Benchmark for Cross-Domain Visual Question Answering
Yao Zhang
Haokun Chen
A. Frikha
Yezi Yang
Denis Krompass
Gengyuan Zhang
Jindong Gu
Volker Tresp
VLM
LRM
16
7
0
19 Nov 2022
CFA: Constraint-based Finetuning Approach for Generalized Few-Shot
  Object Detection
CFA: Constraint-based Finetuning Approach for Generalized Few-Shot Object Detection
Karim Guirguis
Ahmed Hendawy
George Eskandar
Mohamed Abdelsamad
Matthias Kayser
Jürgen Beyerer
27
15
0
11 Apr 2022
Continual Sequence Generation with Adaptive Compositional Modules
Continual Sequence Generation with Adaptive Compositional Modules
Yanzhe Zhang
Xuezhi Wang
Diyi Yang
KELM
CLL
46
42
0
20 Mar 2022
Continuous learning of spiking networks trained with local rules
Continuous learning of spiking networks trained with local rules
D. Antonov
K. Sviatov
S. Sukhov
26
12
0
18 Nov 2021
Replay in Deep Learning: Current Approaches and Missing Biological
  Elements
Replay in Deep Learning: Current Approaches and Missing Biological Elements
Tyler L. Hayes
G. Krishnan
M. Bazhenov
H. Siegelmann
T. Sejnowski
Christopher Kanan
CLL
46
130
0
01 Apr 2021
Domain-aware Neural Language Models for Speech Recognition
Domain-aware Neural Language Models for Speech Recognition
Linda Liu
Yile Gu
Aditya Gourav
Ankur Gandhe
Shashank Kalmane
Denis Filimonov
Ariya Rastrow
I. Bulyko
36
21
0
05 Jan 2021
Automatic Recall Machines: Internal Replay, Continual Learning and the
  Brain
Automatic Recall Machines: Internal Replay, Continual Learning and the Brain
Xu Ji
Joao Henriques
Tinne Tuytelaars
Andrea Vedaldi
KELM
25
10
0
22 Jun 2020
Analyzing the Forgetting Problem in the Pretrain-Finetuning of Dialogue
  Response Models
Analyzing the Forgetting Problem in the Pretrain-Finetuning of Dialogue Response Models
Tianxing He
Jun Liu
Kyunghyun Cho
Myle Ott
Bing-Quan Liu
James R. Glass
Fuchun Peng
CLL
35
9
0
16 Oct 2019
Efficient Continual Learning in Neural Networks with Embedding
  Regularization
Efficient Continual Learning in Neural Networks with Embedding Regularization
Jary Pomponi
Simone Scardapane
Vincenzo Lomonaco
A. Uncini
CLL
36
41
0
09 Sep 2019
Pseudo-Rehearsal: Achieving Deep Reinforcement Learning without
  Catastrophic Forgetting
Pseudo-Rehearsal: Achieving Deep Reinforcement Learning without Catastrophic Forgetting
C. Atkinson
B. McCane
Lech Szymanski
Anthony Robins
VLM
CLL
13
102
0
06 Dec 2018
1