ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03604
  4. Cited By
Feature-Distributed SVRG for High-Dimensional Linear Classification

Feature-Distributed SVRG for High-Dimensional Linear Classification

10 February 2018
Gong-Duo Zhang
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
ArXivPDFHTML

Papers citing "Feature-Distributed SVRG for High-Dimensional Linear Classification"

7 / 7 papers shown
Title
Asynchronous Stochastic Gradient Descent with Delay Compensation
Asynchronous Stochastic Gradient Descent with Delay Compensation
Shuxin Zheng
Qi Meng
Taifeng Wang
Wei Chen
Nenghai Yu
Zhiming Ma
Tie-Yan Liu
98
314
0
27 Sep 2016
On Variance Reduction in Stochastic Gradient Descent and its
  Asynchronous Variants
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
111
196
0
23 Jun 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,822
0
01 Jul 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
316
1,246
0
10 Sep 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
181
1,033
0
10 Sep 2012
The Convex Geometry of Linear Inverse Problems
The Convex Geometry of Linear Inverse Problems
V. Chandrasekaran
Benjamin Recht
P. Parrilo
A. Willsky
203
1,338
0
03 Dec 2010
A Unified Framework for High-Dimensional Analysis of M-Estimators with
  Decomposable Regularizers
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
469
1,379
0
13 Oct 2010
1