ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.02988
  4. Cited By
Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on
  weakly convex functions

Stochastic subgradient method converges at the rate O(k−1/4)O(k^{-1/4})O(k−1/4) on weakly convex functions

8 February 2018
Damek Davis
Dmitriy Drusvyatskiy
ArXivPDFHTML

Papers citing "Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on weakly convex functions"

21 / 21 papers shown
Title
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems
  with Convex Constraints
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints
Hari Dahal
Wei Liu
Yangyang Xu
52
5
0
15 Nov 2023
Escaping limit cycles: Global convergence for constrained
  nonconvex-nonconcave minimax problems
Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems
Thomas Pethick
P. Latafat
Panagiotis Patrinos
Olivier Fercoq
Volkan Cevher
46
45
0
20 Feb 2023
Statistical, Robustness, and Computational Guarantees for Sliced
  Wasserstein Distances
Statistical, Robustness, and Computational Guarantees for Sliced Wasserstein Distances
Sloan Nietert
Ritwik Sadhu
Ziv Goldfeld
Kengo Kato
43
37
0
17 Oct 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the
  Optimization Landscape Around the True Solution
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
Salar Fattahi
52
5
0
15 Jul 2022
Min-Max Bilevel Multi-objective Optimization with Applications in
  Machine Learning
Min-Max Bilevel Multi-objective Optimization with Applications in Machine Learning
Alex Gu
Songtao Lu
Parikshit Ram
Tsui-Wei Weng
57
10
0
03 Mar 2022
Large-scale Optimization of Partial AUC in a Range of False Positive
  Rates
Large-scale Optimization of Partial AUC in a Range of False Positive Rates
Yao Yao
Qihang Lin
Tianbao Yang
49
16
0
03 Mar 2022
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
  Non-Convex Convergence Guarantee
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
56
29
0
01 Mar 2022
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Yu Cheng
Ilias Diakonikolas
Rong Ge
Shivam Gupta
D. Kane
Mahdi Soltanolkotabi
52
13
0
23 Sep 2021
An efficient nonconvex reformulation of stagewise convex optimization
  problems
An efficient nonconvex reformulation of stagewise convex optimization problems
Rudy Bunel
Oliver Hinder
Srinadh Bhojanapalli
Krishnamurthy Dvijotham
Dvijotham
OffRL
35
14
0
27 Oct 2020
Estimating Barycenters of Measures in High Dimensions
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
31
23
0
14 Jul 2020
A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
  and Application to Actor-Critic
A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic
Mingyi Hong
Hoi-To Wai
Zhaoran Wang
Zhuoran Yang
31
136
0
10 Jul 2020
High-Dimensional Robust Mean Estimation via Gradient Descent
High-Dimensional Robust Mean Estimation via Gradient Descent
Yu Cheng
Ilias Diakonikolas
Rong Ge
Mahdi Soltanolkotabi
24
31
0
04 May 2020
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk
  Minimization
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
Kenji Kawaguchi
Haihao Lu
ODL
38
62
0
09 Jul 2019
Efficient Algorithms for Smooth Minimax Optimization
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
48
190
0
02 Jul 2019
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
60
11
0
10 Dec 2018
Stochastic Optimization for DC Functions and Non-smooth Non-convex
  Regularizers with Non-asymptotic Convergence
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
Rong Jin
Tianbao Yang
37
41
0
28 Nov 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and
  Applications in Machine Learning
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
20
107
0
04 Oct 2018
Stochastic model-based minimization under high-order growth
Stochastic model-based minimization under high-order growth
Damek Davis
Dmitriy Drusvyatskiy
Kellie J. MacPhee
14
31
0
01 Jul 2018
Stochastic model-based minimization of weakly convex functions
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
40
372
0
17 Mar 2018
Stochastic Methods for Composite and Weakly Convex Optimization Problems
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
20
126
0
24 Mar 2017
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
132
260
0
10 Dec 2012
1