Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.02178
Cited By
LightNN: Filling the Gap between Conventional Deep Neural Networks and Binarized Networks
2 December 2017
Ruizhou Ding
Z. Liu
Rongye Shi
Diana Marculescu
R. D. Blanton
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LightNN: Filling the Gap between Conventional Deep Neural Networks and Binarized Networks"
6 / 6 papers shown
Title
A Survey of Methods for Low-Power Deep Learning and Computer Vision
Abhinav Goel
Caleb Tung
Yung-Hsiang Lu
George K. Thiruvathukal
VLM
12
92
0
24 Mar 2020
PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning
Dor Livne
Kobi Cohen
29
50
0
14 Jan 2020
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
ViP: Virtual Pooling for Accelerating CNN-based Image Classification and Object Detection
Zhuo Chen
Jiyuan Zhang
Ruizhou Ding
Diana Marculescu
13
12
0
19 Jun 2019
Low-Power Computer Vision: Status, Challenges, Opportunities
S. Alyamkin
M. Ardi
Alexander C. Berg
Achille Brighton
Bo Chen
...
George K. Thiruvathukal
Baiwu Zhang
Jingchi Zhang
Xiaopeng Zhang
Shaojie Zhuo
23
10
0
15 Apr 2019
Hardware-Aware Machine Learning: Modeling and Optimization
Diana Marculescu
Dimitrios Stamoulis
E. Cai
16
45
0
14 Sep 2018
1