Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.00614
Cited By
Visual Interpretability for Deep Learning: a Survey
2 February 2018
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Visual Interpretability for Deep Learning: a Survey"
40 / 40 papers shown
Title
Discovering Chunks in Neural Embeddings for Interpretability
Shuchen Wu
Stephan Alaniz
Eric Schulz
Zeynep Akata
82
0
0
03 Feb 2025
Generalized Task-Driven Medical Image Quality Enhancement with Gradient Promotion
Dong Zhang
Kwang-Ting Cheng
MedIm
134
0
0
03 Jan 2025
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
51
19
0
22 Jan 2023
Explainability in Deep Reinforcement Learning
Alexandre Heuillet
Fabien Couthouis
Natalia Díaz Rodríguez
XAI
160
282
0
15 Aug 2020
Interpreting CNNs via Decision Trees
Quanshi Zhang
Yu Yang
Ying Nian Wu
Song-Chun Zhu
FAtt
70
323
0
01 Feb 2018
Towards Interpretable R-CNN by Unfolding Latent Structures
Tianfu Wu
Wei Sun
Xilai Li
Xi Song
Yangqiu Song
ObjD
30
20
0
14 Nov 2017
Examining CNN Representations with respect to Dataset Bias
Quanshi Zhang
Wenguan Wang
Song-Chun Zhu
SSL
FAtt
51
104
0
29 Oct 2017
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
174
4,596
0
26 Oct 2017
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
127
2,324
0
24 Oct 2017
Interpretable Convolutional Neural Networks
Quanshi Zhang
Ying Nian Wu
Song-Chun Zhu
FAtt
70
781
0
02 Oct 2017
Interpreting CNN Knowledge via an Explanatory Graph
Quanshi Zhang
Ruiming Cao
Feng Shi
Ying Nian Wu
Song-Chun Zhu
FAtt
GNN
SSL
56
242
0
05 Aug 2017
Interactively Transferring CNN Patterns for Part Localization
Quanshi Zhang
Ruiming Cao
Shengming Zhang
Mark Edmonds
Ying Nian Wu
Song-Chun Zhu
30
16
0
05 Aug 2017
Learning how to explain neural networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
76
339
0
16 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
146
1,515
1
19 Apr 2017
Explaining the Unexplained: A CLass-Enhanced Attentive Response (CLEAR) Approach to Understanding Deep Neural Networks
Devinder Kumar
Alexander Wong
Graham W. Taylor
60
61
0
13 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
74
1,520
0
11 Apr 2017
Mining Object Parts from CNNs via Active Question-Answering
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
50
25
0
11 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
210
2,894
0
14 Mar 2017
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
140
708
0
15 Feb 2017
The VQA-Machine: Learning How to Use Existing Vision Algorithms to Answer New Questions
Peng Wang
Qi Wu
Chunhua Shen
Anton Van Den Hengel
OOD
64
86
0
16 Dec 2016
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
50
70
0
14 Nov 2016
Identifying Unknown Unknowns in the Open World: Representations and Policies for Guided Exploration
Himabindu Lakkaraju
Ece Kamar
R. Caruana
Eric Horvitz
54
152
0
28 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
303
20,023
0
07 Oct 2016
Towards Transparent AI Systems: Interpreting Visual Question Answering Models
Yash Goyal
Akrit Mohapatra
Devi Parikh
Dhruv Batra
42
74
0
31 Aug 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
772
36,813
0
25 Aug 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,235
0
12 Jun 2016
Harnessing Deep Neural Networks with Logic Rules
Zhiting Hu
Xuezhe Ma
Zhengzhong Liu
Eduard H. Hovy
Eric Xing
AI4CE
NAI
56
614
0
21 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSL
FAtt
65
665
0
09 Jun 2015
Understanding deep features with computer-generated imagery
Mathieu Aubry
Bryan C. Russell
72
149
0
03 Jun 2015
Unsupervised Learning on Neural Network Outputs: with Application in Zero-shot Learning
Yao Lu
SSL
56
39
0
02 Jun 2015
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
145
1,283
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,672
0
21 Dec 2014
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
244
8,408
0
28 Nov 2014
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
126
1,962
0
26 Nov 2014
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
231
8,336
0
06 Nov 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,295
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
1