ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.00560
  4. Cited By
Interpretable Deep Convolutional Neural Networks via Meta-learning

Interpretable Deep Convolutional Neural Networks via Meta-learning

2 February 2018
Xuan Liu
Xiaoguang Wang
Stan Matwin
    FaML
ArXivPDFHTML

Papers citing "Interpretable Deep Convolutional Neural Networks via Meta-learning"

8 / 8 papers shown
Title
Interpretable & Explorable Approximations of Black Box Models
Interpretable & Explorable Approximations of Black Box Models
Himabindu Lakkaraju
Ece Kamar
R. Caruana
J. Leskovec
FAtt
57
254
0
04 Jul 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
278
2,257
0
24 Jun 2017
TreeView: Peeking into Deep Neural Networks Via Feature-Space
  Partitioning
TreeView: Peeking into Deep Neural Networks Via Feature-Space Partitioning
Jayaraman J. Thiagarajan
B. Kailkhura
P. Sattigeri
Karthikeyan N. Ramamurthy
54
38
0
22 Nov 2016
Nothing Else Matters: Model-Agnostic Explanations By Identifying
  Prediction Invariance
Nothing Else Matters: Model-Agnostic Explanations By Identifying Prediction Invariance
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
47
64
0
17 Nov 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
411
18,334
0
27 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
995
16,931
0
16 Feb 2016
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAtt
AI4CE
122
1,871
0
22 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
1