ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.00381
  4. Cited By
Signal-plus-noise matrix models: eigenvector deviations and fluctuations
v1v2 (latest)

Signal-plus-noise matrix models: eigenvector deviations and fluctuations

1 February 2018
Joshua Cape
M. Tang
Carey E. Priebe
ArXiv (abs)PDFHTML

Papers citing "Signal-plus-noise matrix models: eigenvector deviations and fluctuations"

34 / 34 papers shown
Title
Beyond Sin-Squared Error: Linear-Time Entrywise Uncertainty Quantification for Streaming PCA
Beyond Sin-Squared Error: Linear-Time Entrywise Uncertainty Quantification for Streaming PCA
Syamantak Kumar
Shourya Pandey
Purnamrita Sarkar
27
0
0
14 Jun 2025
On varimax asymptotics in network models and spectral methods for
  dimensionality reduction
On varimax asymptotics in network models and spectral methods for dimensionality reduction
Joshua Cape
85
1
0
08 Mar 2024
Statistical Inference on Latent Space Models for Network Data
Statistical Inference on Latent Space Models for Network Data
Jinming Li
Gongjun Xu
Ji Zhu
57
2
0
11 Dec 2023
Uniform error bound for PCA matrix denoising
Uniform error bound for PCA matrix denoising
Xin T. Tong
Wanjie Wang
Yuguan Wang
68
2
0
22 Jun 2023
An Overview of Asymptotic Normality in Stochastic Blockmodels: Cluster
  Analysis and Inference
An Overview of Asymptotic Normality in Stochastic Blockmodels: Cluster Analysis and Inference
Joshua Agterberg
Joshua Cape
78
1
0
10 May 2023
On Uniform Consistency of Spectral Embeddings
On Uniform Consistency of Spectral Embeddings
Ruofei Zhao
Songkai Xue
Yuekai Sun
63
0
0
25 Apr 2023
Strong Consistency Guarantees for Clustering High-Dimensional Bipartite
  Graphs with the Spectral Method
Strong Consistency Guarantees for Clustering High-Dimensional Bipartite Graphs with the Spectral Method
Guillaume Braun
87
2
0
14 Apr 2023
Elliptic PDE learning is provably data-efficient
Elliptic PDE learning is provably data-efficient
N. Boullé
Diana Halikias
Alex Townsend
96
21
0
24 Feb 2023
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Dapeng Yao
Fangzheng Xie
Yanxun Xu
118
1
0
21 Jul 2022
Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms
Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms
Joshua Agterberg
Jeremias Sulam
64
0
0
08 Feb 2022
Popularity Adjusted Block Models are Generalized Random Dot Product
  Graphs
Popularity Adjusted Block Models are Generalized Random Dot Product Graphs
John Koo
M. Tang
M. Trosset
58
9
0
09 Sep 2021
Entrywise Estimation of Singular Vectors of Low-Rank Matrices with
  Heteroskedasticity and Dependence
Entrywise Estimation of Singular Vectors of Low-Rank Matrices with Heteroskedasticity and Dependence
Joshua Agterberg
Zachary Lubberts
Carey Priebe
107
21
0
27 May 2021
An exact $\sinΘ$ formula for matrix perturbation analysis and its
  applications
An exact sin⁡Θ\sinΘsinΘ formula for matrix perturbation analysis and its applications
He Lyu
Rongrong Wang
63
3
0
16 Nov 2020
Tracy-Widom law for the extreme eigenvalues of large signal-plus-noise
  matrices
Tracy-Widom law for the extreme eigenvalues of large signal-plus-noise matrices
Zhixiang Zhang
G. Pan
43
3
0
25 Sep 2020
A Sharp Blockwise Tensor Perturbation Bound for Orthogonal Iteration
A Sharp Blockwise Tensor Perturbation Bound for Orthogonal Iteration
Yuetian Luo
Garvesh Raskutti
M. Yuan
Anru R. Zhang
85
12
0
06 Aug 2020
The multilayer random dot product graph
The multilayer random dot product graph
Andrew Jones
Patrick Rubin-Delanchy
105
38
0
20 Jul 2020
Manifold structure in graph embeddings
Manifold structure in graph embeddings
Patrick Rubin-Delanchy
75
25
0
09 Jun 2020
Consistency of Spectral Clustering on Hierarchical Stochastic Block
  Models
Consistency of Spectral Clustering on Hierarchical Stochastic Block Models
Lihua Lei
Xiaodong Li
Xingmei Lou
46
19
0
30 Apr 2020
Vintage Factor Analysis with Varimax Performs Statistical Inference
Vintage Factor Analysis with Varimax Performs Statistical Inference
Karl Rohe
Muzhe Zeng
114
55
0
11 Apr 2020
On Two Distinct Sources of Nonidentifiability in Latent Position Random
  Graph Models
On Two Distinct Sources of Nonidentifiability in Latent Position Random Graph Models
Joshua Agterberg
M. Tang
Carey E. Priebe
CML
88
10
0
31 Mar 2020
Randomized Spectral Clustering in Large-Scale Stochastic Block Models
Randomized Spectral Clustering in Large-Scale Stochastic Block Models
Hai Zhang
Xiao Guo
Xiangyu Chang
142
24
0
20 Jan 2020
Efficient Estimation for Random Dot Product Graphs via a One-step
  Procedure
Efficient Estimation for Random Dot Product Graphs via a One-step Procedure
Fangzheng Xie
Yanxun Xu
72
21
0
10 Oct 2019
Subspace Estimation from Unbalanced and Incomplete Data Matrices:
  $\ell_{2,\infty}$ Statistical Guarantees
Subspace Estimation from Unbalanced and Incomplete Data Matrices: ℓ2,∞\ell_{2,\infty}ℓ2,∞​ Statistical Guarantees
Changxiao Cai
Gen Li
Yuejie Chi
H. Vincent Poor
Yuxin Chen
119
13
0
09 Oct 2019
Unified $\ell_{2\rightarrow\infty}$ Eigenspace Perturbation Theory for
  Symmetric Random Matrices
Unified ℓ2→∞\ell_{2\rightarrow\infty}ℓ2→∞​ Eigenspace Perturbation Theory for Symmetric Random Matrices
Lihua Lei
66
9
0
11 Sep 2019
Extending the Davis-Kahan theorem for comparing eigenvectors of two
  symmetric matrices II: Computation and Applications
Extending the Davis-Kahan theorem for comparing eigenvectors of two symmetric matrices II: Computation and Applications
J. Lutzeyer
S. M. I. A. T. Walden
45
0
0
09 Aug 2019
Extending the Davis-Kahan theorem for comparing eigenvectors of two
  symmetric matrices I: Theory
Extending the Davis-Kahan theorem for comparing eigenvectors of two symmetric matrices I: Theory
J. Lutzeyer
S. M. I. A. T. Walden
43
1
0
09 Aug 2019
Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically
  Perturbed Low-Rank Matrices
Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically Perturbed Low-Rank Matrices
Yuxin Chen
Chen Cheng
Jianqing Fan
88
39
0
30 Nov 2018
Two-sample Test of Community Memberships of Weighted Stochastic Block
  Models
Two-sample Test of Community Memberships of Weighted Stochastic Block Models
Yezheng Li
Hongzhe Li
46
17
0
30 Nov 2018
Singular vector and singular subspace distribution for the matrix
  denoising model
Singular vector and singular subspace distribution for the matrix denoising model
Z. Bao
Xiucai Ding
Ke Wang
113
51
0
27 Sep 2018
Bayesian Estimation of Sparse Spiked Covariance Matrices in High
  Dimensions
Bayesian Estimation of Sparse Spiked Covariance Matrices in High Dimensions
Fangzheng Xie
Yanxun Xu
Carey E. Priebe
Joshua Cape
62
8
0
22 Aug 2018
Matrices with Gaussian noise: optimal estimates for singular subspace
  perturbation
Matrices with Gaussian noise: optimal estimates for singular subspace perturbation
Sean O’Rourke
Van Vu
Ke Wang
92
7
0
02 Mar 2018
A statistical interpretation of spectral embedding: the generalised
  random dot product graph
A statistical interpretation of spectral embedding: the generalised random dot product graph
Patrick Rubin-Delanchy
Joshua Cape
M. Tang
Carey E. Priebe
160
133
0
16 Sep 2017
Estimating Mixed Memberships with Sharp Eigenvector Deviations
Estimating Mixed Memberships with Sharp Eigenvector Deviations
Xueyu Mao
Purnamrita Sarkar
Deepayan Chakrabarti
149
89
0
01 Sep 2017
The two-to-infinity norm and singular subspace geometry with
  applications to high-dimensional statistics
The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics
Joshua Cape
M. Tang
Carey E. Priebe
130
136
0
30 May 2017
1