Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.09319
Cited By
Less is more: sampling chemical space with active learning
28 January 2018
Justin S. Smith
B. Nebgen
Nicholas Lubbers
Olexandr Isayev
A. Roitberg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Less is more: sampling chemical space with active learning"
33 / 33 papers shown
Title
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
59
4
0
12 Mar 2025
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
90
0
0
08 Dec 2024
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
80
1
0
29 Nov 2024
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Emmanuel Bengio
Jason Hartford
48
0
0
25 Oct 2024
regAL: Python Package for Active Learning of Regression Problems
Elizaveta Surzhikova
Jonny Proppe
AI4CE
29
0
0
23 Oct 2024
Pretraining Graph Transformers with Atom-in-a-Molecule Quantum Properties for Improved ADMET Modeling
Alessio Fallani
Ramil I. Nugmanov
Jose A. Arjona-Medina
Jörg Kurt Wegner
Alexandre Tkatchenko
Kostiantyn Chernichenko
MedIm
AI4CE
34
0
0
10 Oct 2024
All-in-one foundational models learning across quantum chemical levels
Yuxinxin Chen
Pavlo O. Dral
AI4CE
20
1
0
18 Sep 2024
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
45
4
0
03 Sep 2024
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Amit Kadan
Kevin Ryczko
Erika Lloyd
A. Roitberg
Takeshi Yamazaki
93
1
0
20 May 2024
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
28
15
0
03 Dec 2023
Pareto Optimization to Accelerate Multi-Objective Virtual Screening
Jenna C. Fromer
David E. Graff
Connor W. Coley
23
7
0
16 Oct 2023
InstructBio: A Large-scale Semi-supervised Learning Paradigm for Biochemical Problems
Fang Wu
Huiling Qin
Siyuan Li
Stan Z. Li
Xianyuan Zhan
Jinbo Xu
24
5
0
08 Apr 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
27
21
0
03 Mar 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
Jenna C. Fromer
Connor W. Coley
32
66
0
13 Oct 2022
When does deep learning fail and how to tackle it? A critical analysis on polymer sequence-property surrogate models
Himanshu
T. Patra
AI4CE
13
0
0
12 Oct 2022
Active Few-Shot Classification: a New Paradigm for Data-Scarce Learning Settings
Aymane Abdali
Vincent Gripon
Lucas Drumetz
Bartosz Bogusławski
29
1
0
23 Sep 2022
Unveil the unseen: Exploit information hidden in noise
Bahdan Zviazhynski
G. Conduit
14
2
0
17 Sep 2022
Transition1x -- a Dataset for Building Generalizable Reactive Machine Learning Potentials
M. Schreiner
Arghya Bhowmik
Tejs Vegge
Jonas Busk
Ole Winther
21
62
0
25 Jul 2022
NeuralNEB -- Neural Networks can find Reaction Paths Fast
M. Schreiner
Arghya Bhowmik
Tejs Vegge
Peter Bjørn Jørgensen
Ole Winther
41
23
0
20 Jul 2022
Machine Learning Diffusion Monte Carlo Energies
Kevin Ryczko
J. Krogel
Isaac Tamblyn
DiffM
11
14
0
09 May 2022
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
29
19
0
20 Sep 2021
DeePKS: a comprehensive data-driven approach towards chemically accurate density functional theory
Yixiao Chen
Linfeng Zhang
Han Wang
E. Weinan
11
72
0
01 Aug 2020
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
29
159
0
16 Jul 2020
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
17
257
0
10 Jul 2020
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach
Jiang Wang
Stefan Chmiela
K. Müller
Frank Noè
C. Clementi
6
46
0
04 May 2020
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
40
51
0
02 May 2020
Active Learning Approach to Optimization of Experimental Control
Yadong Wu
Zengming Meng
K. Wen
Chengdong Mi
Jing Zhang
H. Zhai
9
14
0
26 Mar 2020
Automated discovery of a robust interatomic potential for aluminum
Justin S. Smith
B. Nebgen
N. Mathew
Jie Chen
Nicholas Lubbers
...
S. Tretiak
H. Nam
T. Germann
S. Fensin
K. Barros
11
78
0
10 Mar 2020
Machine learning enables long time scale molecular photodynamics simulations
Julia Westermayr
M. Gastegger
M. Menger
Sebastian Mai
L. González
Marquetand
AI4CE
8
71
0
22 Nov 2018
Compressing physical properties of atomic species for improving predictive chemistry
John E. Herr
Kevin J Koh
Kun Yao
John A. Parkhill
AI4CE
22
20
0
31 Oct 2018
Active Learning of Uniformly Accurate Inter-atomic Potentials for Materials Simulation
Linfeng Zhang
De-Ye Lin
Han Wang
R. Car
E. Weinan
9
326
0
28 Oct 2018
1