Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.08930
Cited By
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
26 January 2018
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas Griffiths
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Recasting Gradient-Based Meta-Learning as Hierarchical Bayes"
25 / 25 papers shown
Title
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Chen Wang
Kaiyi Ji
Junyi Geng
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yue Yang
Xiao Lin
Zhipeng Zhao
SSL
129
10
0
28 Jan 2025
Functional Risk Minimization
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
93
0
0
31 Dec 2024
Proxy-informed Bayesian transfer learning with unknown sources
Sabina J. Sloman
Julien Martinelli
Samuel Kaski
81
1
0
05 Nov 2024
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
244
4,035
0
16 Nov 2017
A Simple Neural Attentive Meta-Learner
Nikhil Mishra
Mostafa Rohaninejad
Xi Chen
Pieter Abbeel
OOD
65
199
0
11 Jul 2017
Few-Shot Learning Through an Information Retrieval Lens
Eleni Triantafillou
R. Zemel
R. Urtasun
54
238
0
09 Jul 2017
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
253
8,072
0
15 Mar 2017
Learned Optimizers that Scale and Generalize
Olga Wichrowska
Niru Maheswaranathan
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Nando de Freitas
Jascha Narain Sohl-Dickstein
AI4CE
52
284
0
14 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
781
11,793
0
09 Mar 2017
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNN
AI4CE
91
1,064
0
02 Mar 2017
Learning to Optimize Neural Nets
Ke Li
Jitendra Malik
53
131
0
01 Mar 2017
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
112
1,603
0
27 Sep 2016
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
96
2,000
0
14 Jun 2016
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
325
7,299
0
13 Jun 2016
Low-shot Visual Recognition by Shrinking and Hallucinating Features
Bharath Hariharan
Ross B. Girshick
VLM
50
49
0
09 Jun 2016
Towards a Neural Statistician
Harrison Edwards
Amos Storkey
BDL
60
428
0
07 Jun 2016
Learning to Optimize
Ke Li
Jitendra Malik
51
256
0
06 Jun 2016
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
67
95
0
06 Apr 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
92
999
0
19 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
391
43,154
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.2K
149,474
0
22 Dec 2014
New insights and perspectives on the natural gradient method
James Martens
ODL
66
613
0
03 Dec 2014
Bayesian Multitask Learning with Latent Hierarchies
Hal Daumé
BDL
56
130
0
09 Aug 2014
Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs
Vikash K. Mansinghka
Tejas D. Kulkarni
Yura N. Perov
J. Tenenbaum
144
108
0
29 Jun 2013
Revisiting Natural Gradient for Deep Networks
Razvan Pascanu
Yoshua Bengio
ODL
111
388
0
16 Jan 2013
1