ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.04381
  4. Cited By
MobileNetV2: Inverted Residuals and Linear Bottlenecks
v1v2v3v4 (latest)

MobileNetV2: Inverted Residuals and Linear Bottlenecks

13 January 2018
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
ArXiv (abs)PDFHTML

Papers citing "MobileNetV2: Inverted Residuals and Linear Bottlenecks"

5 / 4,705 papers shown
Title
EffNet: An Efficient Structure for Convolutional Neural Networks
EffNet: An Efficient Structure for Convolutional Neural Networks
Ido Freeman
L. Roese-Koerner
A. Kummert
116
101
0
19 Jan 2018
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Ameya Prabhu
G. Varma
A. Namboodiri
GNN
142
72
0
23 Nov 2017
AOGNets: Compositional Grammatical Architectures for Deep Learning
AOGNets: Compositional Grammatical Architectures for Deep Learning
Xilai Li
Xi Song
Tianfu Wu
81
26
0
15 Nov 2017
A Survey of Model Compression and Acceleration for Deep Neural Networks
A Survey of Model Compression and Acceleration for Deep Neural Networks
Yu Cheng
Duo Wang
Pan Zhou
Zhang Tao
207
1,101
0
23 Oct 2017
Dirty Pixels: Towards End-to-End Image Processing and Perception
Dirty Pixels: Towards End-to-End Image Processing and Perception
Steven Diamond
Vincent Sitzmann
Frank D. Julca-Aguilar
Stephen P. Boyd
Gordon Wetzstein
Felix Heide
133
54
0
23 Jan 2017
Previous
123...939495