ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.03983
  4. Cited By
Fully-Coupled Two-Stream Spatiotemporal Networks for Extremely Low
  Resolution Action Recognition

Fully-Coupled Two-Stream Spatiotemporal Networks for Extremely Low Resolution Action Recognition

11 January 2018
Mingze Xu
Aidean Sharghi
Xin Chen
David J. Crandall
    EgoV
ArXivPDFHTML

Papers citing "Fully-Coupled Two-Stream Spatiotemporal Networks for Extremely Low Resolution Action Recognition"

4 / 4 papers shown
Title
TinyVIRAT: Low-resolution Video Action Recognition
TinyVIRAT: Low-resolution Video Action Recognition
Ugur Demir
Yogesh S Rawat
M. Shah
33
36
0
14 Jul 2020
Extreme Low Resolution Activity Recognition with Confident
  Spatial-Temporal Attention Transfer
Extreme Low Resolution Activity Recognition with Confident Spatial-Temporal Attention Transfer
Yucai Bai
Qinglong Zou
Xieyuanli Chen
Lingxi Li
Zhengming Ding
Long Chen
20
3
0
09 Sep 2019
Privacy-Preserving Action Recognition for Smart Hospitals using
  Low-Resolution Depth Images
Privacy-Preserving Action Recognition for Smart Hospitals using Low-Resolution Depth Images
Edward Chou
Matthew Tan
Cherry Zou
Michelle Guo
Albert Haque
A. Milstein
Li Fei-Fei
PICV
26
44
0
25 Nov 2018
Temporal Recurrent Networks for Online Action Detection
Temporal Recurrent Networks for Online Action Detection
Mingze Xu
M. Gao
Yi-Ting Chen
L. Davis
David J. Crandall
OffRL
31
163
0
18 Nov 2018
1