Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.02982
Cited By
How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD
8 January 2018
Zeyuan Allen-Zhu
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD"
38 / 38 papers shown
Title
Are Convex Optimization Curves Convex?
Guy Barzilai
Ohad Shamir
Moslem Zamani
63
0
0
13 Mar 2025
Faster Acceleration for Steepest Descent
Site Bai
Brian Bullins
ODL
49
0
0
28 Sep 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
44
7
0
05 Mar 2024
Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization
Liang Zhang
Junchi Yang
Amin Karbasi
Niao He
48
2
0
26 Oct 2023
DualFL: A Duality-based Federated Learning Algorithm with Communication Acceleration in the General Convex Regime
Jongho Park
Jinchao Xu
FedML
80
1
0
17 May 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
47
7
0
12 May 2023
Deterministic Nonsmooth Nonconvex Optimization
Michael I. Jordan
Guy Kornowski
Tianyi Lin
Ohad Shamir
Manolis Zampetakis
59
26
0
16 Feb 2023
Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy
Blake E. Woodworth
Konstantin Mishchenko
Francis R. Bach
47
6
0
07 Feb 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
Le‐Yu Chen
Jing Xu
Luo Luo
36
15
0
16 Jan 2023
Fisher information lower bounds for sampling
Sinho Chewi
P. Gerber
Holden Lee
Chen Lu
66
15
0
05 Oct 2022
On the Complexity of Finding Small Subgradients in Nonsmooth Optimization
Guy Kornowski
Ohad Shamir
42
9
0
21 Sep 2022
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
49
31
0
29 Aug 2022
Near-Optimal Algorithms for Making the Gradient Small in Stochastic Minimax Optimization
Le‐Yu Chen
Luo Luo
59
7
0
11 Aug 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
54
8
0
18 Feb 2022
Sampling Approximately Low-Rank Ising Models: MCMC meets Variational Methods
Frederic Koehler
Holden Lee
Andrej Risteski
42
22
0
17 Feb 2022
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
38
61
0
29 Mar 2021
Machine Unlearning via Algorithmic Stability
Enayat Ullah
Tung Mai
Anup B. Rao
Ryan Rossi
R. Arora
40
104
0
25 Feb 2021
Parameter-free Locally Accelerated Conditional Gradients
Alejandro Carderera
Jelena Diakonikolas
Cheuk Yin Lin
Sebastian Pokutta
32
7
0
12 Feb 2021
Potential Function-based Framework for Making the Gradients Small in Convex and Min-Max Optimization
Jelena Diakonikolas
Puqian Wang
33
13
0
28 Jan 2021
Dual Averaging is Surprisingly Effective for Deep Learning Optimization
Samy Jelassi
Aaron Defazio
48
5
0
20 Oct 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
97
53
0
24 Jun 2020
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
48
72
0
15 Jun 2020
Halting Time is Predictable for Large Models: A Universality Property and Average-case Analysis
Courtney Paquette
B. V. Merrienboer
Elliot Paquette
Fabian Pedregosa
44
25
0
08 Jun 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
66
30
0
13 Feb 2020
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
40
346
0
05 Dec 2019
The Complexity of Finding Stationary Points with Stochastic Gradient Descent
Yoel Drori
Shigehito Shimizu
31
64
0
04 Oct 2019
Memory-Sample Tradeoffs for Linear Regression with Small Error
Vatsal Sharan
Aaron Sidford
Gregory Valiant
28
35
0
18 Apr 2019
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Yuling Yan
25
128
0
20 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
38
149
0
02 Feb 2019
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
22
255
0
21 Oct 2018
Stochastic model-based minimization of weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
40
372
0
17 Mar 2018
Stochastic subgradient method converges at the rate
O
(
k
−
1
/
4
)
O(k^{-1/4})
O
(
k
−
1/4
)
on weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
23
100
0
08 Feb 2018
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
45
245
0
29 Aug 2017
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Zeyuan Allen-Zhu
37
80
0
02 Feb 2017
Adaptive Accelerated Gradient Converging Methods under Holderian Error Bound Condition
Mingrui Liu
Tianbao Yang
50
15
0
23 Nov 2016
Accelerate Stochastic Subgradient Method by Leveraging Local Growth Condition
Yi Tian Xu
Qihang Lin
Tianbao Yang
33
11
0
04 Jul 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
52
579
0
18 Mar 2016
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
738
0
19 Mar 2014
1