ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.02854
  4. Cited By
Riemannian Motion Policies
v1v2v3 (latest)

Riemannian Motion Policies

9 January 2018
Nathan D. Ratliff
J. Issac
Daniel Kappler
Stan Birchfield
Dieter Fox
ArXiv (abs)PDFHTML

Papers citing "Riemannian Motion Policies"

7 / 7 papers shown
Title
From Single Images to Motion Policies via Video-Generation Environment Representations
From Single Images to Motion Policies via Video-Generation Environment Representations
Weiming Zhi
Ziyong Ma
Tianyi Zhang
Matthew Johnson-Roberson
VGen3DV
102
0
0
25 May 2025
FACTR: Force-Attending Curriculum Training for Contact-Rich Policy Learning
FACTR: Force-Attending Curriculum Training for Contact-Rich Policy Learning
Jason Jingzhou Liu
Yulong Li
Kenneth Shaw
Tony Tao
Ruslan Salakhutdinov
Deepak Pathak
OffRL
132
1
0
24 Feb 2025
Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards
Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguards
Lukas Brunke
Yanni Zhang
Ralf Romer
Jack Naimer
Nikola Staykov
Siqi Zhou
Angela P. Schoellig
82
4
0
19 Oct 2024
Real-time Perception meets Reactive Motion Generation
Real-time Perception meets Reactive Motion Generation
Daniel Kappler
Franziska Meier
J. Issac
Jim Mainprice
C. Cifuentes
Manuel Wüthrich
V. Berenz
S. Schaal
Nathan D. Ratliff
Jeannette Bohg
55
98
0
10 Mar 2017
Approximately Optimal Continuous-Time Motion Planning and Control via
  Probabilistic Inference
Approximately Optimal Continuous-Time Motion Planning and Control via Probabilistic Inference
Mustafa Mukadam
Ching-An Cheng
Xinyan Yan
Byron Boots
44
16
0
23 Feb 2017
Newton methods for k-order Markov Constrained Motion Problems
Newton methods for k-order Markov Constrained Motion Problems
Marc Toussaint
75
70
0
01 Jul 2014
Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the
  Heuristically Guided Search of Implicit Random Geometric Graphs
Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs
Jonathan Gammell
S. Srinivasa
Timothy D. Barfoot
76
450
0
22 May 2014
1