Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.00173
Cited By
Theory of Deep Learning III: explaining the non-overfitting puzzle
30 December 2017
T. Poggio
Kenji Kawaguchi
Q. Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack Hidary
H. Mhaskar
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theory of Deep Learning III: explaining the non-overfitting puzzle"
21 / 21 papers shown
Title
Functional Risk Minimization
Ferran Alet
Clement Gehring
Tomás Lozano-Pérez
Kenji Kawaguchi
Joshua B. Tenenbaum
Leslie Pack Kaelbling
OffRL
60
0
0
31 Dec 2024
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurelien Lucchi
25
13
0
19 Jan 2023
WLD-Reg: A Data-dependent Within-layer Diversity Regularizer
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
AI4CE
29
7
0
03 Jan 2023
PD-Quant: Post-Training Quantization based on Prediction Difference Metric
Jiawei Liu
Lin Niu
Zhihang Yuan
Dawei Yang
Xinggang Wang
Wenyu Liu
MQ
98
69
0
14 Dec 2022
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
31
15
0
19 Jul 2021
Learning distinct features helps, provably
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
MLT
36
6
0
10 Jun 2021
Provable Super-Convergence with a Large Cyclical Learning Rate
Samet Oymak
35
12
0
22 Feb 2021
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
258
0
18 Nov 2020
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Biwei Huang
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
24
26
0
22 Oct 2020
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
35
19
0
19 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
32
94
0
15 Jun 2020
Deep Gamblers: Learning to Abstain with Portfolio Theory
Liu Ziyin
Zhikang T. Wang
Paul Pu Liang
Ruslan Salakhutdinov
Louis-Philippe Morency
Masahito Ueda
23
110
0
29 Jun 2019
Shallow Neural Networks for Fluid Flow Reconstruction with Limited Sensors
N. Benjamin Erichson
L. Mathelin
Z. Yao
Steven L. Brunton
Michael W. Mahoney
J. Nathan Kutz
AI4CE
27
34
0
20 Feb 2019
Parameter Efficient Training of Deep Convolutional Neural Networks by Dynamic Sparse Reparameterization
Hesham Mostafa
Xin Wang
37
307
0
15 Feb 2019
Optimization Problems for Machine Learning: A Survey
Claudio Gambella
Bissan Ghaddar
Joe Naoum-Sawaya
AI4CE
30
178
0
16 Jan 2019
Towards Theoretical Understanding of Large Batch Training in Stochastic Gradient Descent
Xiaowu Dai
Yuhua Zhu
25
11
0
03 Dec 2018
Generalization Error in Deep Learning
Daniel Jakubovitz
Raja Giryes
M. Rodrigues
AI4CE
32
109
0
03 Aug 2018
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
30
141
0
11 Jun 2018
Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization
D. Kobak
Jonathan Lomond
Benoit Sanchez
33
89
0
28 May 2018
High Dimensional Spaces, Deep Learning and Adversarial Examples
S. Dube
37
29
0
02 Jan 2018
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
42
457
0
13 Nov 2017
1