ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.10132
  4. Cited By
The Multilinear Structure of ReLU Networks

The Multilinear Structure of ReLU Networks

29 December 2017
T. Laurent
J. V. Brecht
ArXivPDFHTML

Papers citing "The Multilinear Structure of ReLU Networks"

12 / 12 papers shown
Title
GD doesn't make the cut: Three ways that non-differentiability affects
  neural network training
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
Siddharth Krishna Kumar
AAML
26
2
0
16 Jan 2024
On the Correctness of Automatic Differentiation for Neural Networks with
  Machine-Representable Parameters
On the Correctness of Automatic Differentiation for Neural Networks with Machine-Representable Parameters
Wonyeol Lee
Sejun Park
A. Aiken
PINN
21
6
0
31 Jan 2023
Parametric Flatten-T Swish: An Adaptive Non-linear Activation Function
  For Deep Learning
Parametric Flatten-T Swish: An Adaptive Non-linear Activation Function For Deep Learning
Hock Hung Chieng
Noorhaniza Wahid
P. Ong
21
6
0
06 Nov 2020
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep
  Network Losses
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
16
2
0
23 Mar 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating
  Decreasing Paths to Infinity
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
35
19
0
31 Dec 2019
Optimization for deep learning: theory and algorithms
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
25
168
0
19 Dec 2019
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Henning Petzka
C. Sminchisescu
29
9
0
16 Dec 2018
Subgradient Descent Learns Orthogonal Dictionaries
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
20
51
0
25 Oct 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm,
  Optimality, and Generalization
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
24
131
0
14 Aug 2018
Deep Neural Networks with Multi-Branch Architectures Are Less Non-Convex
Deep Neural Networks with Multi-Branch Architectures Are Less Non-Convex
Hongyang R. Zhang
Junru Shao
Ruslan Salakhutdinov
39
14
0
06 Jun 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,892
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1