ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.09376
  4. Cited By
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization
  properties of Entropy-SGD and data-dependent priors

Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors

26 December 2017
Gintare Karolina Dziugaite
Daniel M. Roy
    MLT
ArXivPDFHTML

Papers citing "Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors"

36 / 36 papers shown
Title
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Milad Sefidgaran
Abdellatif Zaidi
Piotr Krasnowski
44
0
0
25 Apr 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Milad Sefidgaran
A. Zaidi
Piotr Krasnowski
91
1
0
21 Feb 2025
Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses
Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses
Mathieu Bazinet
Valentina Zantedeschi
Pascal Germain
MLT
AI4CE
31
2
0
26 Sep 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization
  Bounds with Complexity Measures
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
39
3
0
19 Feb 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
32
3
0
16 Jan 2024
More PAC-Bayes bounds: From bounded losses, to losses with general tail
  behaviors, to anytime validity
More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
28
9
0
21 Jun 2023
On Certified Generalization in Structured Prediction
On Certified Generalization in Structured Prediction
Bastian Boll
Christoph Schnörr
21
0
0
15 Jun 2023
Practicality of generalization guarantees for unsupervised domain
  adaptation with neural networks
Practicality of generalization guarantees for unsupervised domain adaptation with neural networks
Adam Breitholtz
Fredrik D. Johansson
OOD
21
1
0
15 Mar 2023
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
40
7
0
14 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
53
17
0
24 Oct 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
26
47
0
11 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
49
7
0
07 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Anticorrelated Noise Injection for Improved Generalization
Anticorrelated Noise Injection for Improved Generalization
Antonio Orvieto
Hans Kersting
F. Proske
Francis R. Bach
Aurelien Lucchi
53
44
0
06 Feb 2022
Demystify Optimization and Generalization of Over-parameterized
  PAC-Bayesian Learning
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks
Non-Vacuous Generalisation Bounds for Shallow Neural Networks
Felix Biggs
Benjamin Guedj
BDL
30
26
0
03 Feb 2022
Self-Certifying Classification by Linearized Deep Assignment
Self-Certifying Classification by Linearized Deep Assignment
Bastian Boll
Alexander Zeilmann
Stefania Petra
Christoph Schnörr
11
2
0
26 Jan 2022
PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks
  with Probabilities over Representations
PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks with Probabilities over Representations
Louis Fortier-Dubois
Gaël Letarte
Benjamin Leblanc
Franccois Laviolette
Pascal Germain
UQCV
17
0
0
28 Oct 2021
Does the Data Induce Capacity Control in Deep Learning?
Does the Data Induce Capacity Control in Deep Learning?
Rubing Yang
J. Mao
Pratik Chaudhari
25
15
0
27 Oct 2021
Probabilistic fine-tuning of pruning masks and PAC-Bayes self-bounded
  learning
Probabilistic fine-tuning of pruning masks and PAC-Bayes self-bounded learning
Soufiane Hayou
Bo He
Gintare Karolina Dziugaite
37
2
0
22 Oct 2021
User-friendly introduction to PAC-Bayes bounds
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
60
196
0
21 Oct 2021
Ridgeless Interpolation with Shallow ReLU Networks in $1D$ is Nearest
  Neighbor Curvature Extrapolation and Provably Generalizes on Lipschitz
  Functions
Ridgeless Interpolation with Shallow ReLU Networks in 1D1D1D is Nearest Neighbor Curvature Extrapolation and Provably Generalizes on Lipschitz Functions
Boris Hanin
MLT
38
9
0
27 Sep 2021
Unveiling the structure of wide flat minima in neural networks
Unveiling the structure of wide flat minima in neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
Gabriele Perugini
R. Zecchina
11
32
0
02 Jul 2021
A unified PAC-Bayesian framework for machine unlearning via information
  risk minimization
A unified PAC-Bayesian framework for machine unlearning via information risk minimization
Sharu Theresa Jose
Osvaldo Simeone
MU
11
7
0
01 Jun 2021
NeurIPS 2020 Competition: Predicting Generalization in Deep Learning
NeurIPS 2020 Competition: Predicting Generalization in Deep Learning
Yiding Jiang
Pierre Foret
Scott Yak
Daniel M. Roy
H. Mobahi
Gintare Karolina Dziugaite
Samy Bengio
Suriya Gunasekar
Isabelle M Guyon
Behnam Neyshabur Google Research
OOD
24
55
0
14 Dec 2020
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
39
24
0
27 Oct 2020
PAC-Bayes Analysis Beyond the Usual Bounds
PAC-Bayes Analysis Beyond the Usual Bounds
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
30
80
0
23 Jun 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent
  Estimates
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
110
147
0
06 Nov 2019
PAC-Bayes with Backprop
PAC-Bayes with Backprop
Omar Rivasplata
Vikram Tankasali
Csaba Szepesvári
21
49
0
19 Aug 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and
  Training of Neural Nets
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
34
13
0
26 Jun 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz
  Augmentation
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
12
109
0
09 May 2019
Wireless Network Intelligence at the Edge
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
19
518
0
07 Dec 2018
PAC-Bayes Control: Learning Policies that Provably Generalize to Novel
  Environments
PAC-Bayes Control: Learning Policies that Provably Generalize to Novel Environments
Anirudha Majumdar
M. Goldstein
Anoopkumar Sonar
20
18
0
11 Jun 2018
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
119
577
0
27 Feb 2015
Pac-Bayesian Supervised Classification: The Thermodynamics of
  Statistical Learning
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
148
454
0
03 Dec 2007
1