Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.09376
Cited By
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
26 December 2017
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors"
36 / 36 papers shown
Title
Generalization Guarantees for Multi-View Representation Learning and Application to Regularization via Gaussian Product Mixture Prior
Milad Sefidgaran
Abdellatif Zaidi
Piotr Krasnowski
44
0
0
25 Apr 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
Milad Sefidgaran
A. Zaidi
Piotr Krasnowski
91
1
0
21 Feb 2025
Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses
Mathieu Bazinet
Valentina Zantedeschi
Pascal Germain
MLT
AI4CE
31
2
0
26 Sep 2024
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures
Paul Viallard
Rémi Emonet
Amaury Habrard
Emilie Morvant
Valentina Zantedeschi
39
3
0
19 Feb 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
32
3
0
16 Jan 2024
More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
28
9
0
21 Jun 2023
On Certified Generalization in Structured Prediction
Bastian Boll
Christoph Schnörr
21
0
0
15 Jun 2023
Practicality of generalization guarantees for unsupervised domain adaptation with neural networks
Adam Breitholtz
Fredrik D. Johansson
OOD
21
1
0
15 Mar 2023
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
40
7
0
14 Nov 2022
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
53
17
0
24 Oct 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
26
47
0
11 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
49
7
0
07 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Anticorrelated Noise Injection for Improved Generalization
Antonio Orvieto
Hans Kersting
F. Proske
Francis R. Bach
Aurelien Lucchi
53
44
0
06 Feb 2022
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks
Felix Biggs
Benjamin Guedj
BDL
30
26
0
03 Feb 2022
Self-Certifying Classification by Linearized Deep Assignment
Bastian Boll
Alexander Zeilmann
Stefania Petra
Christoph Schnörr
11
2
0
26 Jan 2022
PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks with Probabilities over Representations
Louis Fortier-Dubois
Gaël Letarte
Benjamin Leblanc
Franccois Laviolette
Pascal Germain
UQCV
17
0
0
28 Oct 2021
Does the Data Induce Capacity Control in Deep Learning?
Rubing Yang
J. Mao
Pratik Chaudhari
25
15
0
27 Oct 2021
Probabilistic fine-tuning of pruning masks and PAC-Bayes self-bounded learning
Soufiane Hayou
Bo He
Gintare Karolina Dziugaite
37
2
0
22 Oct 2021
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
60
196
0
21 Oct 2021
Ridgeless Interpolation with Shallow ReLU Networks in
1
D
1D
1
D
is Nearest Neighbor Curvature Extrapolation and Provably Generalizes on Lipschitz Functions
Boris Hanin
MLT
38
9
0
27 Sep 2021
Unveiling the structure of wide flat minima in neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
Gabriele Perugini
R. Zecchina
11
32
0
02 Jul 2021
A unified PAC-Bayesian framework for machine unlearning via information risk minimization
Sharu Theresa Jose
Osvaldo Simeone
MU
11
7
0
01 Jun 2021
NeurIPS 2020 Competition: Predicting Generalization in Deep Learning
Yiding Jiang
Pierre Foret
Scott Yak
Daniel M. Roy
H. Mobahi
Gintare Karolina Dziugaite
Samy Bengio
Suriya Gunasekar
Isabelle M Guyon
Behnam Neyshabur Google Research
OOD
24
55
0
14 Dec 2020
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
39
24
0
27 Oct 2020
PAC-Bayes Analysis Beyond the Usual Bounds
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
30
80
0
23 Jun 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
110
147
0
06 Nov 2019
PAC-Bayes with Backprop
Omar Rivasplata
Vikram Tankasali
Csaba Szepesvári
21
49
0
19 Aug 2019
Chaining Meets Chain Rule: Multilevel Entropic Regularization and Training of Neural Nets
Amir-Reza Asadi
Emmanuel Abbe
BDL
AI4CE
34
13
0
26 Jun 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
12
109
0
09 May 2019
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
19
518
0
07 Dec 2018
PAC-Bayes Control: Learning Policies that Provably Generalize to Novel Environments
Anirudha Majumdar
M. Goldstein
Anoopkumar Sonar
20
18
0
11 Jun 2018
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
119
577
0
27 Feb 2015
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
148
454
0
03 Dec 2007
1