ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.09005
  4. Cited By
Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding

Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding

25 December 2017
G. Linderman
M. Rachh
J. Hoskins
Stefan Steinerberger
Y. Kluger
ArXivPDFHTML

Papers citing "Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding"

23 / 23 papers shown
Title
Node Embeddings via Neighbor Embeddings
Node Embeddings via Neighbor Embeddings
Jan Niklas Böhm
Marius Keute
Alica Guzmán
Sebastian Damrich
Andrew Draganov
D. Kobak
GNN
57
0
0
31 Mar 2025
Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective
Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective
Zhexuan Liu
Rong Ma
Yiqiao Zhong
60
0
0
22 Oct 2024
Online t-SNE for single-cell RNA-seq
Online t-SNE for single-cell RNA-seq
Hui Ma
Kai Chen
OnRL
26
0
0
21 Jun 2024
Sailing in high-dimensional spaces: Low-dimensional embeddings through
  angle preservation
Sailing in high-dimensional spaces: Low-dimensional embeddings through angle preservation
Jonas Fischer
Rong Ma
51
0
0
14 Jun 2024
Preserving local densities in low-dimensional embeddings
Preserving local densities in low-dimensional embeddings
Jonas Fischer
R. Burkholz
Jilles Vreeken
22
3
0
31 Jan 2023
An interpretable imbalanced semi-supervised deep learning framework for
  improving differential diagnosis of skin diseases
An interpretable imbalanced semi-supervised deep learning framework for improving differential diagnosis of skin diseases
Futian Weng
Yuanting Ma
J. Sun
Shijun Shan
Qiyuan Li
Jianping Zhu
Yang Wang
Yan Xu
34
0
0
20 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
26
15
0
18 Oct 2022
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Bayesian Sparse Gaussian Mixture Model in High Dimensions
Dapeng Yao
Fangzheng Xie
Yanxun Xu
33
1
0
21 Jul 2022
Uniform Manifold Approximation with Two-phase Optimization
Uniform Manifold Approximation with Two-phase Optimization
Hyeon Jeon
Hyung-Kwon Ko
S. Lee
Jaemin Jo
Jinwook Seo
32
13
0
01 May 2022
SQuadMDS: a lean Stochastic Quartet MDS improving global structure
  preservation in neighbor embedding like t-SNE and UMAP
SQuadMDS: a lean Stochastic Quartet MDS improving global structure preservation in neighbor embedding like t-SNE and UMAP
Pierre Lambert
Cyril de Bodt
M. Verleysen
J. Lee
9
4
0
24 Feb 2022
A Probabilistic Graph Coupling View of Dimension Reduction
A Probabilistic Graph Coupling View of Dimension Reduction
Hugues van Assel
T. Espinasse
J. Chiquet
F. Picard
16
14
0
31 Jan 2022
Theoretical Foundations of t-SNE for Visualizing High-Dimensional
  Clustered Data
Theoretical Foundations of t-SNE for Visualizing High-Dimensional Clustered Data
T. Tony Cai
Rong Ma
21
108
0
16 May 2021
Deep Recursive Embedding for High-Dimensional Data
Zixia Zhou
Yuanyuan Wang
B. Lelieveldt
Qian Tao
24
7
0
12 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots
Code-Mixing on Sesame Street: Dawn of the Adversarial Polyglots
Samson Tan
Shafiq R. Joty
AAML
29
35
0
17 Mar 2021
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
161
301
0
08 Dec 2020
Parametric UMAP embeddings for representation and semi-supervised
  learning
Parametric UMAP embeddings for representation and semi-supervised learning
Tim Sainburg
Leland McInnes
T. Gentner
28
215
0
27 Sep 2020
Attraction-Repulsion Spectrum in Neighbor Embeddings
Attraction-Repulsion Spectrum in Neighbor Embeddings
Jan Niklas Böhm
Philipp Berens
D. Kobak
28
53
0
17 Jul 2020
t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections
t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections
Angelos Chatzimparmpas
Rafael M. Martins
Andreas Kerren
30
132
0
17 Feb 2020
Improving the Effectiveness and Efficiency of Stochastic Neighbour
  Embedding with Isolation Kernel
Improving the Effectiveness and Efficiency of Stochastic Neighbour Embedding with Isolation Kernel
Ye Zhu
Kai Ming Ting
20
9
0
24 Jun 2019
Heavy-tailed kernels reveal a finer cluster structure in t-SNE
  visualisations
Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations
D. Kobak
G. Linderman
Stefan Steinerberger
Y. Kluger
Philipp Berens
11
35
0
15 Feb 2019
bigMap: Big Data Mapping with Parallelized t-SNE
bigMap: Big Data Mapping with Parallelized t-SNE
Joan Garriga
F. Bartumeus
19
4
0
24 Dec 2018
An algorithm for the principal component analysis of large data sets
An algorithm for the principal component analysis of large data sets
N. Halko
P. Martinsson
Y. Shkolnisky
M. Tygert
68
277
0
30 Jul 2010
1