ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.08964
  4. Cited By
Nearly optimal Bayesian Shrinkage for High Dimensional Regression

Nearly optimal Bayesian Shrinkage for High Dimensional Regression

24 December 2017
Qifan Song
F. Liang
ArXivPDFHTML

Papers citing "Nearly optimal Bayesian Shrinkage for High Dimensional Regression"

28 / 28 papers shown
Title
The flare Package for High Dimensional Linear Regression and Precision
  Matrix Estimation in R
The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R
Xingguo Li
T. Zhao
Xiaoming Yuan
Han Liu
39
74
0
27 Jun 2020
Bayesian Shrinkage towards Sharp Minimaxity
Bayesian Shrinkage towards Sharp Minimaxity
Qifan Song
23
7
0
11 Apr 2020
Adaptive posterior contraction rates for the horseshoe
Adaptive posterior contraction rates for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
40
70
0
13 Feb 2017
Uncertainty quantification for the horseshoe
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
64
73
0
07 Jul 2016
Prediction risk for the horseshoe regression
Prediction risk for the horseshoe regression
A. Bhadra
J. Datta
Yunfan Li
Nicholas G. Polson
Brandon T. Willard
122
16
0
16 May 2016
A General Framework for Bayes Structured Linear Models
A General Framework for Bayes Structured Linear Models
Chao Gao
A. van der Vaart
Harrison H. Zhou
256
57
0
06 Jun 2015
On the Computational Complexity of High-Dimensional Bayesian Variable
  Selection
On the Computational Complexity of High-Dimensional Bayesian Variable Selection
Yun Yang
Martin J. Wainwright
Michael I. Jordan
100
151
0
29 May 2015
Posterior Concentration Properties of a General Class of Shrinkage
  Priors around Nearly Black Vectors
Posterior Concentration Properties of a General Class of Shrinkage Priors around Nearly Black Vectors
P. Ghosh
A. Chakrabarti
40
18
0
28 Dec 2014
Sure Screening for Gaussian Graphical Models
Sure Screening for Gaussian Graphical Models
Shuang Luo
R. Song
Daniela Witten
51
23
0
29 Jul 2014
Empirical Bayes posterior concentration in sparse high-dimensional
  linear models
Empirical Bayes posterior concentration in sparse high-dimensional linear models
Ryan Martin
Raymond Mess
S. Walker
162
103
0
30 Jun 2014
Bayesian variable selection with shrinking and diffusing priors
Bayesian variable selection with shrinking and diffusing priors
N. Narisetty
Xuming He
BDL
83
212
0
26 May 2014
The Horseshoe Estimator: Posterior Concentration around Nearly Black
  Vectors
The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors
S. V. D. Pas
B. Kleijn
A. van der Vaart
71
169
0
01 Apr 2014
Bayesian linear regression with sparse priors
Bayesian linear regression with sparse priors
I. Castillo
Johannes Schmidt-Hieber
A. van der Vaart
151
379
0
04 Mar 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
104
908
0
17 Feb 2014
Dirichlet-Laplace priors for optimal shrinkage
Dirichlet-Laplace priors for optimal shrinkage
A. Bhattacharya
D. Pati
Natesh S. Pillai
David B. Dunson
89
440
0
21 Jan 2014
On asymptotically optimal confidence regions and tests for
  high-dimensional models
On asymptotically optimal confidence regions and tests for high-dimensional models
Sara van de Geer
Peter Buhlmann
Yaácov Ritov
Ruben Dezeure
191
1,130
0
03 Mar 2013
A significance test for the lasso
A significance test for the lasso
R. Lockhart
Jonathan E. Taylor
Robert Tibshirani
Robert Tibshirani
239
658
0
30 Jan 2013
Needles and Straw in a Haystack: Posterior concentration for possibly
  sparse sequences
Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences
I. Castillo
A. van der Vaart
118
251
0
06 Nov 2012
Posterior contraction in sparse Bayesian factor models for massive
  covariance matrices
Posterior contraction in sparse Bayesian factor models for massive covariance matrices
D. Pati
A. Bhattacharya
Natesh S. Pillai
David B. Dunson
94
101
0
16 Jun 2012
Generalized Beta Mixtures of Gaussians
Generalized Beta Mixtures of Gaussians
Artin Armagan
David B. Dunson
M. Clyde
84
153
0
25 Jul 2011
Posterior consistency in linear models under shrinkage priors
Posterior consistency in linear models under shrinkage priors
Artin Armagan
David B. Dunson
Jaeyong Lee
W. Bajwa
Nate Strawn
58
32
0
20 Apr 2011
Generalized double Pareto shrinkage
Generalized double Pareto shrinkage
Artin Armagan
David B. Dunson
Jaeyong Lee
78
374
0
05 Apr 2011
Bayes and empirical-Bayes multiplicity adjustment in the
  variable-selection problem
Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem
James G. Scott
J. Berger
132
582
0
10 Nov 2010
Bernstein von Mises Theorems for Gaussian Regression with increasing
  number of regressors
Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors
D. Bontemps
106
74
0
07 Sep 2010
Nearly unbiased variable selection under minimax concave penalty
Nearly unbiased variable selection under minimax concave penalty
Cun-Hui Zhang
323
3,557
0
25 Feb 2010
Minimax rates of estimation for high-dimensional linear regression over
  $\ell_q$-balls
Minimax rates of estimation for high-dimensional linear regression over ℓq\ell_qℓq​-balls
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
214
575
0
11 Oct 2009
Bayesian variable selection for high dimensional generalized linear
  models: convergence rates of the fitted densities
Bayesian variable selection for high dimensional generalized linear models: convergence rates of the fitted densities
Wenxin Jiang
409
93
0
18 Oct 2007
Convergence rates of posterior distributions for noniid observations
Convergence rates of posterior distributions for noniid observations
S. Ghosal
A. van der Vaart
329
396
0
03 Aug 2007
1