Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.08443
Cited By
Inverse Classification for Comparison-based Interpretability in Machine Learning
22 December 2017
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inverse Classification for Comparison-based Interpretability in Machine Learning"
23 / 23 papers shown
Title
From Search To Sampling: Generative Models For Robust Algorithmic Recourse
Prateek Garg
Lokesh Nagalapatti
Sunita Sarawagi
31
0
0
12 May 2025
A New Approach to Backtracking Counterfactual Explanations: A Causal Framework for Efficient Model Interpretability
Pouria Fatemi
Ehsan Sharifian
Mohammad Hossein Yassaee
43
0
0
05 May 2025
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs
Chhavi Yadav
Evan Monroe Laufer
Dan Boneh
Kamalika Chaudhuri
91
0
0
06 Feb 2025
Explaining Black-Box Models through Counterfactuals
Patrick Altmeyer
A. V. Deursen
Cynthia C. S. Liem
CML
LRM
34
2
0
14 Aug 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
34
7
0
26 Mar 2023
RACCER: Towards Reachable and Certain Counterfactual Explanations for Reinforcement Learning
Jasmina Gajcin
Ivana Dusparic
CML
24
3
0
08 Mar 2023
CEnt: An Entropy-based Model-agnostic Explainability Framework to Contrast Classifiers' Decisions
Julia El Zini
Mohamad Mansour
M. Awad
21
1
0
19 Jan 2023
Counterfactual Explanations for Support Vector Machine Models
S. Salazar
Samuel Denton
Ansaf Salleb-Aouissi
AAML
FAtt
20
2
0
14 Dec 2022
Decomposing Counterfactual Explanations for Consequential Decision Making
Martin Pawelczyk
Lea Tiyavorabun
Gjergji Kasneci
CML
16
1
0
03 Nov 2022
Redefining Counterfactual Explanations for Reinforcement Learning: Overview, Challenges and Opportunities
Jasmina Gajcin
Ivana Dusparic
CML
OffRL
35
8
0
21 Oct 2022
Greybox XAI: a Neural-Symbolic learning framework to produce interpretable predictions for image classification
Adrien Bennetot
Gianni Franchi
Javier Del Ser
Raja Chatila
Natalia Díaz Rodríguez
AAML
27
29
0
26 Sep 2022
Counterfactual Explanations Using Optimization With Constraint Learning
Donato Maragno
Tabea E. Rober
Ilker Birbil
CML
55
10
0
22 Sep 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
19
38
0
13 Mar 2022
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
18
33
0
09 Jul 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations
Andrea Ferrario
M. Loi
17
5
0
09 Oct 2020
Model extraction from counterfactual explanations
Ulrich Aivodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
27
51
0
03 Sep 2020
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
703
0
08 Jan 2020
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
30
199
0
21 Oct 2019
VINE: Visualizing Statistical Interactions in Black Box Models
M. Britton
FAtt
17
21
0
01 Apr 2019
1