ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.08107
  4. Cited By
A Deep Learning Interpretable Classifier for Diabetic Retinopathy
  Disease Grading

A Deep Learning Interpretable Classifier for Diabetic Retinopathy Disease Grading

21 December 2017
J. D. L. Torre
A. Valls
D. Puig
ArXivPDFHTML

Papers citing "A Deep Learning Interpretable Classifier for Diabetic Retinopathy Disease Grading"

19 / 19 papers shown
Title
DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule
  Detection and Classification
DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification
Wentao Zhu
Chaochun Liu
Wei Fan
Xiaohui Xie
MedIm
42
378
0
25 Jan 2018
Understanding the Effective Receptive Field in Deep Convolutional Neural
  Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Wenjie Luo
Yujia Li
R. Urtasun
R. Zemel
HAI
81
1,793
0
15 Jan 2017
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
352
14,223
0
23 Feb 2016
The Power of Depth for Feedforward Neural Networks
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
195
732
0
12 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
717
27,303
0
02 Dec 2015
On the Expressive Power of Deep Learning: A Tensor Analysis
On the Expressive Power of Deep Learning: A Tensor Analysis
Nadav Cohen
Or Sharir
Amnon Shashua
79
470
0
16 Sep 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
419
43,234
0
11 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
280
18,587
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
401
43,589
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.4K
100,213
0
04 Sep 2014
Deep Learning in Neural Networks: An Overview
Deep Learning in Neural Networks: An Overview
Jürgen Schmidhuber
HAI
222
16,336
0
30 Apr 2014
OverFeat: Integrated Recognition, Localization and Detection using
  Convolutional Networks
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
P. Sermanet
David Eigen
Xiang Zhang
Michaël Mathieu
Rob Fergus
Yann LeCun
ObjD
149
5,004
0
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
283
7,279
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
486
15,861
0
12 Nov 2013
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
224
12,422
0
24 Jun 2012
Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition
Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition
D. Ciresan
U. Meier
L. Gambardella
Jürgen Schmidhuber
109
992
0
01 Mar 2010
How to Explain Individual Classification Decisions
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
126
1,102
0
06 Dec 2009
1