Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.07557
Cited By
Differentially Private Federated Learning: A Client Level Perspective
20 December 2017
Robin C. Geyer
T. Klein
Moin Nabi
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially Private Federated Learning: A Client Level Perspective"
33 / 233 papers shown
Title
Private Federated Learning with Domain Adaptation
Daniel W. Peterson
Pallika H. Kanani
Virendra J. Marathe
FedML
21
81
0
13 Dec 2019
Helios: Heterogeneity-Aware Federated Learning with Dynamically Balanced Collaboration
Zirui Xu
Zhao Yang
Jinjun Xiong
Xiang Chen
FedML
24
58
0
03 Dec 2019
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
19
174
0
22 Nov 2019
Stochastic Channel-Based Federated Learning for Medical Data Privacy Preserving
Rulin Shao
Hongyu Hè
Hui Liu
Dianbo Liu
FedML
OOD
25
13
0
23 Oct 2019
Abnormal Client Behavior Detection in Federated Learning
Suyi Li
Yong Cheng
Yang Liu
Wei Wang
Tianjian Chen
AAML
8
134
0
22 Oct 2019
Eavesdrop the Composition Proportion of Training Labels in Federated Learning
Lixu Wang
Shichao Xu
Tianlin Li
Qi Zhu
FedML
22
63
0
14 Oct 2019
Differential Privacy-enabled Federated Learning for Sensitive Health Data
Olivia Choudhury
A. Gkoulalas-Divanis
Theodoros Salonidis
I. Sylla
Yoonyoung Park
Grace Hsu
Amar K. Das
FedML
OOD
17
175
0
07 Oct 2019
Differentially Private Meta-Learning
Jeffrey Li
M. Khodak
S. Caldas
Ameet Talwalkar
FedML
35
106
0
12 Sep 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
21
22
0
10 Sep 2019
An End-to-End Encrypted Neural Network for Gradient Updates Transmission in Federated Learning
Hongyu Li
Tianqi Han
FedML
19
32
0
22 Aug 2019
Machine Learning at the Network Edge: A Survey
M. G. Sarwar Murshed
Chris Murphy
Daqing Hou
Nazar Khan
Ganesh Ananthanarayanan
Faraz Hussain
38
378
0
31 Jul 2019
Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges
Solmaz Niknam
Harpreet S. Dhillon
J. H. Reed
36
599
0
30 Jul 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
21
30
0
30 Jul 2019
YourAdvalue: Measuring Advertising Price Dynamics without Bankrupting User Privacy
Michalis Pachilakis
P. Papadopoulos
Nikolaos Laoutaris
E. Markatos
N. Kourtellis
27
9
0
24 Jul 2019
FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare
Yiqiang Chen
Jindong Wang
Chaohui Yu
Wen Gao
Xin Qin
FedML
34
704
0
22 Jul 2019
Privacy-Preserving Classification with Secret Vector Machines
Valentin Hartmann
Konark Modi
J. M. Pujol
Robert West
23
14
0
08 Jul 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
112
2,290
0
04 Jul 2019
DP-LSSGD: A Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM
Bao Wang
Quanquan Gu
M. Boedihardjo
Farzin Barekat
Stanley J. Osher
16
25
0
28 Jun 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
6
467
0
28 May 2019
Federated Forest
Yang Liu
Yingting Liu
Zhijie Liu
Junbo Zhang
Chuishi Meng
Yu Zheng
FedML
13
144
0
24 May 2019
Evaluating Differentially Private Machine Learning in Practice
Bargav Jayaraman
David Evans
15
7
0
24 Feb 2019
Federated Heavy Hitters Discovery with Differential Privacy
Wennan Zhu
Peter Kairouz
H. B. McMahan
Haicheng Sun
Wei Li
FedML
18
106
0
22 Feb 2019
Learning Private Neural Language Modeling with Attentive Aggregation
Shaoxiong Ji
Shirui Pan
Guodong Long
Xue Li
Jing Jiang
Zi Huang
FedML
MoMe
16
136
0
17 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
30
100
0
08 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
59
1,397
0
03 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
63
692
0
03 Dec 2018
Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning
Peng Kuang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
FedML
28
776
0
03 Dec 2018
Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data
Eunjeong Jeong
Seungeun Oh
Hyesung Kim
Jihong Park
M. Bennis
Seong-Lyun Kim
FedML
28
594
0
28 Nov 2018
Multi-Institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation
Micah J. Sheller
G. A. Reina
Brandon Edwards
Jason Martin
Spyridon Bakas
FedML
24
457
0
10 Oct 2018
Mitigating Sybils in Federated Learning Poisoning
Clement Fung
Chris J. M. Yoon
Ivan Beschastnikh
AAML
15
497
0
14 Aug 2018
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
359
37
0
15 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
87
1,455
0
10 May 2018
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
Takayuki Nishio
Ryo Yonetani
FedML
49
1,376
0
23 Apr 2018
Previous
1
2
3
4
5