ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.07185
  4. Cited By
On Wasserstein Reinforcement Learning and the Fokker-Planck equation

On Wasserstein Reinforcement Learning and the Fokker-Planck equation

19 December 2017
Pierre Harvey Richemond
B. Maginnis
ArXivPDFHTML

Papers citing "On Wasserstein Reinforcement Learning and the Fokker-Planck equation"

6 / 6 papers shown
Title
Wasserstein Adaptive Value Estimation for Actor-Critic Reinforcement Learning
Wasserstein Adaptive Value Estimation for Actor-Critic Reinforcement Learning
Ali Baheri
Zahra Sharooei
Chirayu Salgarkar
284
0
0
17 Jan 2025
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
31
5
0
17 May 2023
Differentiable Trust Region Layers for Deep Reinforcement Learning
Differentiable Trust Region Layers for Deep Reinforcement Learning
Fabian Otto
P. Becker
Ngo Anh Vien
Hanna Ziesche
Gerhard Neumann
OffRL
41
19
0
22 Jan 2021
Learning to Score Behaviors for Guided Policy Optimization
Learning to Score Behaviors for Guided Policy Optimization
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
A. Choromańska
K. Choromanski
Michael I. Jordan
27
38
0
11 Jun 2019
Accelerated Flow for Probability Distributions
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
47
31
0
10 Jan 2019
Policy Optimization as Wasserstein Gradient Flows
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
16
66
0
09 Aug 2018
1