Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.06563
Cited By
Safe Mutations for Deep and Recurrent Neural Networks through Output Gradients
18 December 2017
Joel Lehman
Jay Chen
Jeff Clune
Kenneth O. Stanley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Safe Mutations for Deep and Recurrent Neural Networks through Output Gradients"
7 / 7 papers shown
Title
Improving Deep Policy Gradients with Value Function Search
Enrico Marchesini
Chris Amato
23
9
0
20 Feb 2023
A Surrogate-Assisted Controller for Expensive Evolutionary Reinforcement Learning
Yuxing Wang
Tiantian Zhang
Yongzhe Chang
Bin Liang
Xueqian Wang
Bo Yuan
21
15
0
01 Jan 2022
Evolving Neural Networks through a Reverse Encoding Tree
Haoling Zhang
Chao-Han Huck Yang
Hector Zenil
N. Kiani
Yue-Hong Shen
Jesper N. Tegnér
16
5
0
03 Feb 2020
Deep Innovation Protection: Confronting the Credit Assignment Problem in Training Heterogeneous Neural Architectures
S. Risi
Kenneth O. Stanley
27
4
0
29 Dec 2019
Monte-Carlo Tree Search for Policy Optimization
Xiaobai Ma
Katherine Driggs-Campbell
Zongzhang Zhang
Mykel J. Kochenderfer
20
6
0
23 Dec 2019
Proximal Distilled Evolutionary Reinforcement Learning
Cristian Bodnar
Ben Day
Pietro Lió
30
71
0
24 Jun 2019
Combating catastrophic forgetting with developmental compression
Shawn L. E. Beaulieu
Sam Kriegman
Josh Bongard
25
4
0
12 Apr 2018
1